Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Stress ; 22(1): 93-102, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30369292

RESUMO

The central noradrenaline (NA) stress-response network co-mediates hypothalamic-pituitary-adrenal (HPA) axis activation and arginine-vasopressin (AVP) release. Dysregulation of these systems contributes to stress-related diseases such as human obesity, but their interrelation remains unclear. The study was aimed to test for the first time in vivo whether central noradrenergic activity quantitatively indexed by the availability of the presynaptic NA transporter (NAT) is associated with HPA axis responsiveness as measured with the combined dexamethasone suppression/corticotropin releasing hormone stimulation (dex/CRH) test and copeptin as a surrogate marker of the serum AVP tone in highly obese, otherwise, healthy individuals compared to age- and sex-matched non-obese, healthy controls. In order to assess central NAT availability, positron emission tomography (PET) was applied using the NAT-selective radiotracer S,S-[11C]O-methylreboxetine (MRB) and correlated with curve indicators derived from the dex/CRH test (maximum, MAX, and area under the curve, AUC, for cortisol and adrenocorticotropic hormone, ACTH) as well as with copeptin. In non-obese controls, positive correlations were found between the NAT distribution volume ratios (DVR) of the orbitofrontal cortex (OFC) and the amygdala with the HPA response (OFC: ACTHMAX r = 0.87, p = .001; cortisolMAX r = 0.86, p = .002; amygdala: ACTHMAX r = 0.86, p = .002; cortisolMAX r = 0.79, p = .006), while in obesity, the hypothalamic DVR correlated inversely with the HPA axis response (cortisolMAX, r = -0.66, p = .04) and with copeptin (r = -0.71, p = .02). This association of central NAT availability with HPA axis responsiveness and copeptin suggests a mechanistic interaction between noradrenergic transmission with HPA axis activity and the serum AVP system that differs between non-obese individuals with prefrontal-limbic involvement and obesity with a hypothalamic-centered relationship. Whether the latter finding contributes to obesogenic behavior needs to be further explored.


Assuntos
Glicopeptídeos/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Obesidade/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Hormônio Adrenocorticotrópico/sangue , Adulto , Arginina Vasopressina/metabolismo , Encéfalo/metabolismo , Hormônio Liberador da Corticotropina , Dexametasona/farmacologia , Feminino , Glicopeptídeos/sangue , Humanos , Hidrocortisona/sangue , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Norepinefrina/metabolismo , Obesidade/sangue , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Estresse Psicológico
2.
Int J Neuropsychopharmacol ; 21(2): 108-113, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016993

RESUMO

Background: Quetiapine is effective in treating depressive symptoms in major depressive disorder and bipolar disorder, but the mechanisms underlying its antidepressants effects are unknown. Norquetiapine, a metabolite of quetiapine, has high affinity for norepinephrine transporter, which might account for its therapeutic efficacy. Methods: In this study, we used positron emission tomography with (S,S)-[11C]O-methyl reboxetine to estimate norepinephrine transporter density and assess the relationship between norepinephrine transporter occupancy by quetiapine XR and improvement in depression in patients with major depressive disorder (n=5) and bipolar disorder (n=5). After the baseline positron emission tomography scan, patients were treated with quetiapine XR with a target dose of 150 mg in major depressive disorder and 300 mg in bipolar disorder. Patients had a second positron emission tomography scan at the end of week 2 and a final scan at week 7. Results: Norepinephrine transporter density was significantly lower in locus ceruleus in patients compared with healthy subjects. Further, there was a significant positive correlation between quetiapine XR dose and norepinephrine transporter occupancy in locus ceruleus at week 2. The norepinephrine transporter occupancy at week 2 in hypothalamus but not in other regions predicted improvement in depression as reflected by reduction in MADRS scores from baseline to week 7. The estimated dose of quetiapine XR associated with 50% norepinephrine transporter occupancy in hypothalamus at week 2 was 256 mg and the estimated plasma levels of norquetiapine to achieve 50% norepinephrine transporter occupancy was 36.8 µg/L. Conclusion: These data provide preliminary support for the hypothesis that norepinephrine transporter occupancy by norquetiapine may be a contributor to the antidepressant effects of quetiapine.


Assuntos
Inibidores da Captação Adrenérgica , Antidepressivos/farmacocinética , Transtorno Bipolar/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Dibenzotiazepinas/sangue , Hipotálamo/efeitos dos fármacos , Locus Cerúleo/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/efeitos dos fármacos , Tomografia por Emissão de Pósitrons/métodos , Fumarato de Quetiapina/farmacocinética , Reboxetina , Adulto , Antidepressivos/administração & dosagem , Transtorno Bipolar/diagnóstico por imagem , Preparações de Ação Retardada , Transtorno Depressivo Maior/diagnóstico por imagem , Feminino , Humanos , Hipotálamo/diagnóstico por imagem , Locus Cerúleo/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Fumarato de Quetiapina/administração & dosagem , Adulto Jovem
3.
Eur J Nucl Med Mol Imaging ; 45(9): 1618-1625, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29627935

RESUMO

PURPOSE: Although the mechanisms by which the central noradrenaline (NA) system influences appetite and controls energy balance are quite well understood, its relationship to changes in body weight remains largely unknown. The main goal of this study was to further clarify whether the brain NA system is a stable trait or whether it can be altered by dietary intervention. METHODS: We aimed to compare central NA transporter (NAT) availability in ten obese, otherwise healthy individuals with a body mass index (BMI) of 42.4 ± 3.7 kg/m2 (age 34 ± 9 years, four women) and ten matched non-obese, healthy controls (BMI 23.9 ± 2.5 kg/m2, age 33 ± 10 years, four women) who underwent PET with the NAT-selective radiotracer (S,S)-[11C]O-methylreboxetine (MRB) before and 6 months after dietary intervention. RESULTS: MRI-based individual volume-of-interest analyses revealed an increase in binding potential (BPND) in the insula and the hippocampus of obese individuals, which correlated well with changes in BMI (-3.3 ± 5.3%; p = 0.03) following completion of the dietary intervention. Furthermore, voxel-wise regression analyses showed that lower BPND in these regions, but also in the midbrain and the prefrontal cortex, at baseline was associated with higher achieved weight loss (e.g., hippocampal area R2 = 0.80; p < 0.0001). No changes were observed in non-obese controls. CONCLUSION: These first longitudinal interventional data on NAT availability in highly obese individuals indicate that the central NA system is modifiable. Our findings suggest that NAT availability before intervention could help predict the amount and success of weight loss in obese individuals and help adjust treatment options individually by allowing prediction of the benefit of a dietary intervention.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Obesidade/terapia , Tomografia por Emissão de Pósitrons , Redução de Peso , Adulto , Índice de Massa Corporal , Radioisótopos de Carbono , Feminino , Alemanha , Humanos , Obesidade/metabolismo
4.
Eur J Nucl Med Mol Imaging ; 44(6): 1056-1064, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28066877

RESUMO

PURPOSE: The brain noradrenaline (NA) system plays an important role in the central nervous control of energy balance and is thus implicated in the pathogenesis of obesity. The specific processes modulated by this neurotransmitter which lead to obesity and overeating are still a matter of debate. METHODS: We tested the hypothesis that in vivo NA transporter (NAT) availability is changed in obesity by using positron emission tomography (PET) and S,S-[11C]O-methylreboxetine (MRB) in twenty subjects comprising ten highly obese (body mass index BMI > 35 kg/m2), metabolically healthy, non-depressed individuals and ten non-obese (BMI < 30 kg/m2) healthy controls. RESULTS: Overall, we found no significant differences in binding potential (BPND) values between obese and non-obese individuals in the investigated brain regions, including the NAT-rich thalamus (0.40 ± 0.14 vs. 0.41 ± 0.18; p = 0.84) though additional discriminant analysis correctly identified individual group affiliation based on regional BPND in all but one (control) case. Furthermore, inter-regional correlation analyses indicated different BPND patterns between both groups but this did not survive testing for multiple comparions. CONCLUSIONS: Our data do not find an overall involvement of NAT changes in human obesity. However, preliminary secondary findings of distinct regional and associative patterns warrant further investigation.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Obesidade/metabolismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Morfolinas , Obesidade/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Reboxetina , Adulto Jovem
5.
Neuroimage ; 130: 241-247, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876475

RESUMO

OBJECTIVE: Previous imaging studies with positron emission tomography (PET) have reliably demonstrated an age-associated decline in the dopamine system. Most of these studies have focused on the densities of dopamine receptor subtypes D2/3R (D2R family) in the striatum using antagonist radiotracers that are largely nonselective for D2R vs. D3R subtypes. Therefore, less is known about any possible age effects in D3-rich extrastriatal areas such as the substantia nigra/ventral tegmental area (SN/VTA) and hypothalamus. This study sought to investigate whether the receptor availability measured with [(11)C](+)PHNO, a D3R-preferring agonist radiotracer, also declines with age. METHODS: Forty-two healthy control subjects (9 females, 33 males; age range 19-55 years) were scanned with [(11)C](+)PHNO using a High Resolution Research Tomograph (HRRT). Parametric images were computed using the simplified reference tissue model (SRTM2) with cerebellum as the reference region. Binding potentials (BPND) were calculated for the amygdala, caudate, hypothalamus, pallidum, putamen, SN/VTA, thalamus, and ventral striatum and then confirmed at the voxel level with whole-brain parametric images. RESULTS: Regional [(11)C](+)PHNO BPND displayed a negative correlation between receptor availability and age in the caudate (r=-0.56, corrected p=0.0008) and putamen (r=-0.45, corrected p=0.02) in healthy subjects (respectively 8% and 5% lower per decade). No significant correlations with age were found between age and other regions (including the hypothalamus and SN/VTA). Secondary whole-brain voxel-wise analysis confirmed these ROI findings of negative associations and further identified a positive correlation in midbrain (SN/VTA) regions. CONCLUSION: In accordance with previous studies, the striatum (an area rich in D2R) is associated with age-related declines of the dopamine system. We did not initially find evidence of changes with age in the SN/VTA and hypothalamus, areas previously found to have a predominantly D3R signal as measured with [(11)C](+)PHNO. A secondary analysis did find a significant positive correlation in midbrain (SN/VTA) regions, indicating that there may be differential effects of aging, whereby D2R receptor availability decreases with age while D3R availability stays unchanged or is increased.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Antagonistas de Dopamina/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Receptores de Dopamina D3/metabolismo , Adulto , Radioisótopos de Carbono , Feminino , Voluntários Saudáveis , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Receptores de Dopamina D2/metabolismo , Adulto Jovem
6.
Mov Disord ; 31(3): 405-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26685774

RESUMO

INTRODUCTION: The basis for SWEDD is unclear, with most cases representing PD mimics but some later developing PD with a dopaminergic deficit. METHODS: We studied a patient initially diagnosed with SWEDD (based on (18)F-dopa PET) who developed unequivocal PD associated with a leucine-rich repeat kinase 2 p.G2019S mutation. Repeat multitracer PET was performed at 17 years' disease duration, including (+)[11C]dihydrotetrabenazine, [11C](N,N-dimethyl-2-(2-amino-4-cyanophenylthio) benzylamine (which binds the serotonin transporter), and (18)F-dopa. RESULTS: The patient showed bilateral striatal dopaminergic denervation (right putamen 28% of age-matched normal, left putamen 33%). (18)F-dopa uptake was decreased, particularly on the left (mean 31% of normal vs. 45% on the more affected right side). Serotonin transporter binding was relatively preserved in the putamen (right mean 90% of normal, left 81%) and several cortical regions. CONCLUSIONS: SWEDD can occur in genetically determined PD and may, in some cases, be the result of compensatory nondopaminergic mechanisms operating in early disease.


Assuntos
Encéfalo/patologia , Dopamina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação/genética , Doença de Parkinson/diagnóstico , Encéfalo/metabolismo , Dopamina/metabolismo , Feminino , Heterozigoto , Humanos , Leucina/metabolismo , Pessoa de Meia-Idade , Doença de Parkinson/genética , Doença de Parkinson/patologia , Tomografia por Emissão de Pósitrons/métodos , Cintilografia
7.
AJR Am J Roentgenol ; 206(1): 162-72, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26491894

RESUMO

OBJECTIVE: This review article explores recent advancements in PET/MRI for clinical oncologic imaging. CONCLUSION: Radiologists should understand the technical considerations that have made PET/MRI feasible within clinical workflows, the role of PET tracers for imaging various molecular targets in oncology, and advantages of hybrid PET/MRI compared with PET/CT. To facilitate this understanding, we discuss clinical examples (including gliomas, breast cancer, bone metastases, prostate cancer, bladder cancer, gynecologic malignancy, and lymphoma) as well as future directions, challenges, and areas for continued technical optimization for PET/MRI.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Multimodal , Neoplasias/diagnóstico , Tomografia por Emissão de Pósitrons/métodos , Meios de Contraste , Humanos , Neoplasias/diagnóstico por imagem , Compostos Radiofarmacêuticos
8.
Eur J Nucl Med Mol Imaging ; 42(10): 1530-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26044120

RESUMO

PURPOSE: [(18)F]FPEB is a promising PET radioligand for the metabotropic glutamate receptor 5 (mGluR5), a potential target for the treatment of neuropsychiatric diseases. The purpose of this study was to evaluate the test-retest reproducibility of [(18)F]FPEB in the human brain. METHODS: Seven healthy male subjects were scanned twice, 3 - 11 weeks apart. Dynamic data were acquired using bolus plus infusion of 162 ± 32 MBq [(18)F]FPEB. Four methods were used to estimate volume of distribution (V T): equilibrium analysis (EQ) using arterial (EQA) or venous input data (EQV), MA1, and a two-tissue compartment model (2 T). Binding potential (BP ND) was also estimated using cerebellar white matter (CWM) or gray matter (CGM) as the reference region using EQ, 2 T and MA1. Absolute test-retest variability (aTRV) of V T and BP ND were calculated for each method. Venous blood measurements (C V) were compared with arterial input (C A) to examine their usability in EQ analysis. RESULTS: Regional V T estimated by the four methods displayed a high degree of agreement (r (2) ranging from 0.83 to 0.99 among the methods), although EQA and EQV overestimated V T by a mean of 9 % and 7 %, respectively, compared to 2 T. Mean values of aTRV of V T were 11 % by EQA, 12 % by EQV, 14 % by MA1 and 14 % by 2 T. Regional BP ND also agreed well among the methods and mean aTRV of BP ND was 8 - 12 % (CWM) and 7 - 9 % (CGM). Venous and arterial blood concentrations of [(18)F]FPEB were well matched during equilibrium (C V = 1.01 · C A, r (2) = 0.95). CONCLUSION: [(18)F]FPEB binding shows good TRV with minor differences among analysis methods. Venous blood can be used as an alternative for input function measurement instead of arterial blood in EQ analysis. Thus, [(18)F]FPEB is an excellent PET imaging tracer for mGluR5 in humans.


Assuntos
Encéfalo/metabolismo , Imagem Molecular/métodos , Nitrilas/administração & dosagem , Nitrilas/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Piridinas/administração & dosagem , Piridinas/farmacocinética , Receptor de Glutamato Metabotrópico 5/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Humanos , Infusões Intravenosas , Masculino , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual , Adulto Jovem
9.
Neuroimage ; 86: 306-10, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24121204

RESUMO

OBJECTIVES: Noradrenergic dysfunction is implicated in obesity. The norepinephrine transporter (NET) regulates the synaptic availability of norepinephrine. However, NET availability has not been previously characterized in vivo in obese people using Positron Emission Tomography (PET) imaging. Here we report findings evaluating NET availability in individuals with obesity and matched lean (i.e., normal weight) comparison subjects. METHODS: Seventeen obese but otherwise healthy individuals with a mean±SD body mass index (BMI) of 34.7±2.6 and 17 lean individuals with a mean±SD BMI of 23.1±1.4 were studied using a high-resolution research tomograph (HRRT) and (S,S)-[(11)C]O-methylreboxetine ([(11)C]-MRB), a radioligand selective for the NET. The regional brain NET binding potential (BPND) was estimated by the multilinear reference tissue model 2 (MRTM2) with the occipital cortex as a reference region. BPND for regions of interest were obtained with the Automated Anatomic Labeling (AAL) template registered to individual's structural MR scans. RESULTS: Obese individuals had lower NET BPND values in the thalamus (p<0.038, 27% reduction) including within the pulvinar (p<0.083, 30% reduction), but not in the hypothalamus, locus coeruleus or the raphe nuclei, compared to lean individuals. When age was included as a covariate, the difference in NET BPND values remained significant in the thalamus (p<0.025) and pulvinar (p<0.042). CONCLUSIONS: These results indicate that NET availability is decreased in the thalamus, including the pulvinar, in obese individuals. These findings further support data indicating noradrenergic dysfunction in obesity and suggest impaired NE clearance in obesity.


Assuntos
Morfolinas/farmacocinética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Norepinefrina/metabolismo , Obesidade/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Tálamo/metabolismo , Adulto , Disponibilidade Biológica , Radioisótopos de Carbono/farmacocinética , Feminino , Humanos , Masculino , Compostos Radiofarmacêuticos/farmacocinética , Reboxetina , Tálamo/diagnóstico por imagem , Distribuição Tecidual
10.
Mol Imaging ; 12(2): 77-82, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23415395

RESUMO

We examined the reproducibility of using the constant infusion paradigm for equilibrium measurement of D2/3 receptors using [11C]-(+)-propyl-hexahydro-naphtho-oxazin (PHNO) positron emission tomography (PET). Six subjects were scanned with a bolus plus constant infusion (Kbol = 80 minutes) of [11C]-(+)-PHNO. Binding potential (BPND) was computed using the equilibrium approach and compared to a simplified reference tissue model (SRTM). The rate of change in the concentration-activity curve from 60 to 90 minutes was -5 ± 13%/h in the caudate, putamen, substantia nigra, thalamus, and cerebellum but was 15 ± 15%/h in the ventral striatum and pallidum. Test-retest variability was lower in striatal compared to extrastriatal regions (4 ± 8% vs -8 ± 22%, respectively) using the equilibrium approach, with comparable results with SRTM. The equilibrium ratio and SRTM yielded reliable BPND estimates (intraclass correlation coefficient = 0.88 and 0.82, respectively). These studies support the reproducibility of the bolus plus constant infusion paradigm with [11C]-(+)-PHNO PET.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Adulto , Feminino , Humanos , Masculino , Receptores de Dopamina D2/metabolismo , Reprodutibilidade dos Testes , Adulto Jovem
11.
Proc Natl Acad Sci U S A ; 107(32): 14455-9, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660731

RESUMO

Prior research points to the importance of psychostimulants in improving self-control. However, the neural substrates underlying such improvement remain unclear. Here, in a pharmacological functional MRI study of the stop signal task, we show that methylphenidate (as compared with placebo) robustly decreased stop signal reaction time (SSRT), an index of improved control, in cocaine-dependent patients (a population in which inhibitory control is impaired). Methylphenidate-induced decreases in SSRT were positively correlated with inhibition-related activation of left middle frontal cortex (MFC) and negatively with activation of the ventromedial prefrontal cortex (vmPFC) in whole brain linear regressions. Inhibition-related MFC but not vmPFC activation distinguished individuals with short and long SSRT in 36 demographically matched healthy individuals, whereas vmPFC but not MFC activation, along with improvement in SSRT, was correlated with a previously implicated biomarker of methylphenidate response (systolic blood pressure). These results implicate a specific neural (i.e., vmPFC) mechanism whereby stimulants improve inhibitory control. Altered ventromedial prefrontal activation and increased blood pressure may represent useful CNS and peripheral biomarkers in individualized treatment with methylphenidate for patients with cocaine dependence.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Inibição Psicológica , Metilfenidato/farmacologia , Adulto , Biomarcadores , Mapeamento Encefálico , Feminino , Lobo Frontal/fisiologia , Humanos , Comportamento Impulsivo/tratamento farmacológico , Imageamento por Ressonância Magnética , Masculino , Metilfenidato/administração & dosagem , Tempo de Reação
12.
Artigo em Inglês | MEDLINE | ID: mdl-37680310

RESUMO

Introduction: Alzheimer's disease (AD) is characterized by the misfolding and aggregation of two major proteins: amyloid-beta (Aß) and tau. Antibody-based PET radioligands are desirable due to their high specificity and affinity; however, antibody uptake in the brain is limited by the blood-brain barrier (BBB). Previously, we demonstrated that antibody transport across the BBB can be facilitated through interaction with the transferrin receptor (TfR), and the bispecific antibody-based PET ligands were capable of detecting Aß aggregates via ex vivo imaging. Since tau accumulation in the brain is more closely correlated with neuronal death and cognition, we report here our strategies to prepare four F-18-labeled specifically engineered bispecific antibody probes for the selective detection of tau and Aß aggregates to evaluate their feasibility and specificity, particularly for in vivo PET imaging. Methods: We first created and evaluated (via both in vitro and ex vivo studies) four specifically engineered bispecific antibodies, by fusion of single-chain variable fragments (scFv) of a TfR antibody with either a full-size IgG antibody of Aß or tau or with their respective scFv. Using [18F]SFB as the prosthetic group, all four 18F-labeled bispecific antibody probes were then prepared by conjugation of antibody and [18F]SFB in acetonitrile/0.1 M borate buffer solution (final pH ~ 8.5) with an incubation of 20 min at room temperature, followed by purification on a PD MiniTrap G-25 size exclusion gravity column. Results: Based on both in vitro and ex vivo evaluation, the bispecific antibodies displayed much higher brain concentrations than the unmodified antibody, supporting our subsequent F18-radiolabeling. [18F]SFB was produced in high yields in 60 min (decay-corrected radiochemical yield (RCY) 46.7 ± 5.4) with radiochemical purities of >95%, confirmed by analytical high performance liquid chromatography (HPLC) and radio-TLC. Conjugation of [18F]SFB and bispecific antibodies showed a 65%-83% conversion efficiency with radiochemical purities of 95%-99% by radio-TLC. Conclusions: We successfully labeled four novel and specifically engineered bispecific antibodies with [18F]SFB under mild conditions with a high RCY and purities. This study provides strategies to create brain-penetrable F-18 radiolabeled antibody probes for the selective detection of tau and Aß aggregates in the brain of transgenic AD mice via in vivo PET imaging.

13.
Neuroimage ; 63(1): 232-9, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22776451

RESUMO

UNLABELLED: Microglia play an essential role in many brain diseases. Microglia are activated by local tissue damage or inflammation, but systemic inflammation can also activate microglia. An important clinical question is whether the effects of systemic inflammation on microglia mediate the deleterious effects of systemic inflammation in diseases such as Alzheimer's dementia, multiple sclerosis, and stroke. Positron Emission Tomography (PET) imaging with ligands that bind to Translocator Protein (TSPO) can be used to detect activated microglia. The aim of this study was to evaluate whether the effect of systemic inflammation on microglia could be measured with PET imaging in nonhuman primates, using the TSPO ligand [(11)C]PBR28. METHODS: Six female baboons (Papio anubis) were scanned before and at 1h and/or 4h and/or 22 h after intravenous administration of E. coli lipopolysaccharide (LPS; 0.1mg/kg), which induces systemic inflammation. Regional time-activity data from regions of interest (ROIs) were fitted to the two-tissue compartmental model, using the metabolite-corrected arterial plasma curve as input function. Total volume of distribution (V(T)) of [(11)C]PBR28 was used as a measure of total ligand binding. The primary outcome was change in V(T) from baseline. Serum levels of tumor necrosis factor alpha (TNFα), interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), and interleukin-8 (IL-8) were used to assess correlations between systemic inflammation and microglial activation. In one baboon, immunohistochemistry was used to identify cells expressing TSPO. RESULTS: LPS administration increased [(11)C]PBR28 binding (F(3,6)=5.1, p=.043) with a 29 ± 16% increase at 1h (n=4) and a 62 ± 34% increase at 4h (n=3) post-LPS. There was a positive correlation between serum IL-1ß and IL-6 levels and the increase in [(11)C]PBR28 binding. TSPO immunoreactivity occurred almost exclusively in microglia and rarely in astrocytes. CONCLUSION: In the nonhuman-primate brain, LPS-induced systemic inflammation produces a robust increase in the level of TSPO that is readily detected with [(11)C]PBR28 PET. The effect of LPS on [(11)C]PBR28 binding is likely mediated by inflammatory cytokines. Activation of microglia may be a mechanism through which systemic inflammatory processes influence the course of diseases such as Alzheimer's, multiple sclerosis, and possibly depression.


Assuntos
Acetamidas , Encéfalo/diagnóstico por imagem , Encéfalo/imunologia , Encefalite/diagnóstico por imagem , Encefalite/imunologia , Microglia/diagnóstico por imagem , Microglia/imunologia , Piridinas , Animais , Encéfalo/efeitos dos fármacos , Radioisótopos de Carbono , Encefalite/induzido quimicamente , Endotoxinas , Feminino , Humanos , Lipopolissacarídeos , Microglia/efeitos dos fármacos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos
14.
Neuroimage ; 63(1): 447-59, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22789740

RESUMO

The highly diverse serotonergic system with at least 16 different receptor subtypes is implicated in the pathophysiology of most neuropsychiatric disorders including affective and anxiety disorders, obsessive compulsive disorder, post-traumatic stress disorder, eating disorders, sleep disturbance, attention deficit/hyperactivity disorder, drug addiction, suicidal behavior, schizophrenia, Alzheimer, etc. Alterations of the interplay between various pre- and postsynaptic receptor subtypes might be involved in the pathogenesis of these disorders. However, there is a lack of comprehensive in vivo values using standardized procedures. In the current PET study we quantified 3 receptor subtypes, including the major inhibitory (5-HT(1A) and 5-HT(1B)) and excitatory (5-HT(2A)) receptors, and the transporter (5-HTT) in the brain of healthy human subjects to provide a database of standard values. PET scans were performed on 95 healthy subjects (age=28.0 ± 6.9 years; 59% males) using the selective radioligands [carbonyl-(11)C]WAY-100635, [(11)C]P943, [(18)F]altanserin and [(11)C]DASB, respectively. A standard template in MNI stereotactic space served for region of interest delineation. This template follows two anatomical parcellation schemes: 1) Brodmann areas including 41 regions and 2) AAL (automated anatomical labeling) including 52 regions. Standard values (mean, SD, and range) for each receptor and region are presented. Mean cortical and subcortical binding potential (BP) values were in good agreement with previously published human in vivo and post-mortem data. By means of linear equations, PET binding potentials were translated to post-mortem binding (provided in pmol/g), yielding 5.89 pmol/g (5-HT(1A)), 23.5 pmol/g (5-HT(1B)), 31.44 pmol/g (5-HT(2A)), and 11.33 pmol/g (5-HTT) being equivalent to the BP of 1, respectively. Furthermore, we computed individual voxel-wise maps with BP values and generated average tracer-specific whole-brain binding maps. This knowledge might improve our interpretation of the alterations taking place in the serotonergic system during neuropsychiatric disorders.


Assuntos
Encéfalo/metabolismo , Bases de Dados Factuais/normas , Tomografia por Emissão de Pósitrons/métodos , Tomografia por Emissão de Pósitrons/normas , Receptores de Serotonina/metabolismo , Neurônios Serotoninérgicos/diagnóstico por imagem , Neurônios Serotoninérgicos/metabolismo , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Serotonina/análise , Valores de Referência , Adulto Jovem
15.
Synapse ; 66(6): 489-500, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22213512

RESUMO

Although [¹¹C]-(+)-PHNO has enabled quantification of the dopamine-D3 receptor (D3R) in the human brain in vivo, its selectivity for the D3R is not sufficiently high to allow us to disregard its binding to the dopamine-D2 receptor (D2R). We quantified the affinity of [¹¹C]-(+)-PHNO for the D2R and D3R in the living primate brain. Two rhesus monkeys were examined on four occasions each, with [¹¹C]-(+)-PHNO administered in a bolus + infusion paradigm. Varying doses of unlabeled (+)-PHNO were coadministered on each occasion (total doses ranging from 0.09 to 5.61 µg kg⁻¹). The regional binding potential (BP(ND) ) and the corresponding doses of injected (+)-PHNO were used as inputs in a model that quantified the affinity of (+)-PHNO for the D2R and D3R, as well as the regional fractions of the [¹¹C]-(+)-PHNO signal attributable to D3R binding. (+)-PHNO in vivo affinity for the D3R (K(d)/f(ND) ~0.23-0.56 nM) was 25- to 48-fold higher than that for the D2R (K(d)/f(ND) ~11-14 nM). The tracer limits for (+)-PHNO (dose associated with D3R occupancy ~10%) were estimated at ~0.02-0.04 µg kg⁻¹ injected mass for anesthetized primate and at 0.01-0.02 µg kg⁻¹ for awake human positron emission tomography (PET) studies. Our data enabled a rational design and interpretation of future PET studies with [¹¹C]-(+)-PHNO.


Assuntos
Benzoxazinas/metabolismo , Encéfalo/metabolismo , Agonistas de Dopamina/metabolismo , Naftóis/metabolismo , Oxazinas/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Animais , Benzoxazinas/química , Ligação Competitiva , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono/química , Feminino , Macaca mulatta/metabolismo , Naftóis/química , Tomografia por Emissão de Pósitrons , Especificidade por Substrato
16.
Brain Sci ; 12(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36358364

RESUMO

Serotonin (5-hydroxytryptamine, 5-HT) as well as noradrenaline (NA) are key modulators of various fundamental brain functions including the control of appetite. While manipulations that alter brain serotoninergic signaling clearly affect body weight, studies implicating 5-HT transporters and NA transporters (5-HTT and NAT, respectively) as a main drug treatment target for human obesity have not been conclusive. The aim of this positron emission tomography (PET) study was to investigate how these central transporters are associated with changes of body weight after 6 months of dietary intervention or Roux-en-Y gastric bypass (RYGB) surgery in order to assess whether 5-HTT as well as NAT availability can predict weight loss and consequently treatment success. The study population consisted of two study cohorts using either the 5-HTT-selective radiotracer [11C]DASB to measure 5-HTT availability or the NAT-selective radiotracer [11C]MRB to assess NAT availability. Each group included non-obesity healthy participants, patients with severe obesity (body mass index, BMI, >35 kg/m2) following a conservative dietary program (diet) and patients undergoing RYGB surgery within a 6-month follow-up. Overall, changes in BMI were not associated with changes of both 5-HTT and NAT availability, while 5-HTT availability in the dorsal raphe nucleus (DRN) prior to intervention was associated with substantial BMI reduction after RYGB surgery and inversely related with modest BMI reduction after diet. Taken together, the data of our study indicate that 5-HTT and NAT are involved in the pathomechanism of obesity and have the potential to serve as predictors of treatment outcomes.

17.
Int J Innov Res Med Sci ; 7(6): 254-271, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37841504

RESUMO

Background: Preclinical studies indicate that cannabidiol (CBD), the primary nonaddictive component of cannabis, has a wide range of reported pharmacological effects such as analgesic and anxiolytic actions; however, the exact mechanisms of action for these effects have not been examined in chronic osteoarthritis (OA). Similar to other chronic pain syndromes, OA pain can have a significant affective component characterized by mood changes. Serotonin (5-HT) is a neurotransmitter implicated in pain, depression, and anxiety. Pain is often in comorbidity with mood and anxiety disorders in patients with OA. Since primary actions of CBD are analgesic and anxiolytic, in this first in vivo positron emission tomography (PET) imaging study, we investigate the interaction of CBD with serotonin 5-HT1A receptor via a combination of in vivo neuroimaging and behavioral studies in a well-validated OA animal model. Methods: The first aim of this study was to evaluate the target involvement, including the evaluation of modulation by acute administration of CBD, or a specific target antagonist/agonist intervention, in control animals. The brain 5-HT1A activity/availability was assessed via in vivo dynamic PET imaging (up to 60 min) using a selective 5-HT1A radioligand ([18F]MeFWAY). Tracer bindings of 17 ROIs were evaluated based on averaged SUVR values over the last 10 min using CB as the reference region. We subsequently examined the neurochemical and behavioral alterations in OA animals (induction with monosodium iodoacetate (MIA) injection), as compared to control animals, via neuroimaging and behavioral assessment. Further, we examined the effects of repeated low-dose CBD treatment on mechanical allodynia (von Frey tests) and anxiety-like (light/dark box tests, L/D), depressive-like (forced swim tests, FST) behaviors in OA animals, as compared to after vehicle treatment. Results: The tracer binding was significantly reduced in control animals after an acute dose of CBD administered intravenously (1.0 mg/kg, i.v.), as compared to that for baseline. This binding specificity to 5-HT1A was further confirmed by a similar reduction of tracer binding when a specific 5-HT1A antagonist WAY1006235 was used (0.3 mg/kg, i.v.). Mice subjected to the MIA-induced OA for 13-20 days showed a decreased 5-HT1A tracer binding (25% to 41%), consistent with the notion that 5-HT1A plays a role in the modulation of pain in OA. Repeated treatment with CBD administered subcutaneously (5 mg/kg/day, s.c., for 16 days after OA induction) increased 5-HT1A tracer binding, while no significant improvement was observed after vehicle. A trend of increased anxiety or depressive-like behavior in the light/dark box or forced swim tests after OA induction, and a decrease in those behaviors after repeated low-dose CBD treatment, are consistent with the anxiolytic action of CBD through 5HT1A receptor activation. There appeared to be a sex difference: females seem to be less responsive at the baseline towards pain stimuli, while being more sensitive to CBD treatment. Conclusion: This first in vivo PET imaging study in an OA animal model has provided evidence for the interaction of CBD with the serotonin 5-HT1A receptor. Behavioral studies with more pharmacological interventions to support the target involvement are needed to further confirm these critical findings.

18.
Neuroimage ; 56(1): 268-79, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20869448

RESUMO

[(11)C]MRB is one of the most promising radioligands used to measure brain norepinephrine transporters (NET) with positron emission tomography (PET). The objective of this study was to evaluate the suitability of [(11)C]MRB for drug occupancy studies of NET using atomoxetine (ATX), a NET uptake inhibitor used in the treatment of depression and attention-deficit hyperactivity disorder (ADHD). A second goal of the study was identification of a suitable reference region. Ten PET studies were performed in three anesthetized rhesus monkeys following an infusion of ATX or placebo. [(11)C]MRB arterial input functions and ATX plasma levels were also measured. A dose-dependent reduction of [(11)C]MRB volume of distribution was observed after correction for [(11)C]MRB plasma free fraction. ATX IC(50) was estimated to be 31 ± 10ng/mL plasma. This corresponds to an effective dose (ED(50)) of 0.13mg/kg, which is much lower than the therapeutic dose of ATX in ADHD (1.0-1.5mg/kg). [(11)C]MRB binding potential BP(ND) in the thalamus was estimated to be 1.8 ± 0.3. Defining a reference region for a NET radiotracer is challenging due to the widespread and relatively uniform distribution of NET in the brain. Three regions were evaluated for use as reference region: caudate, putamen and occipital cortex. Caudate was found to be the most suitable for preclinical drug occupancy studies in rhesus monkeys. The IC(50) estimate obtained using MRTM2 BP(ND) without arterial blood sampling was 21 ± 3ng/mL (using caudate as the reference region). This study demonstrated that [(11)C]MRB is suitable for drug occupancy studies of NET.


Assuntos
Inibidores da Captação Adrenérgica/metabolismo , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono/farmacocinética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Propilaminas/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Animais , Cloridrato de Atomoxetina , Macaca mulatta , Tomografia por Emissão de Pósitrons , Distribuição Tecidual
19.
Obes Surg ; 31(11): 4868-4876, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34414548

RESUMO

PURPOSE: Roux-en-Y gastric bypass (RYGB) surgery is currently the most efficient treatment to achieve long-term weight loss in individuals with severe obesity. This is largely attributed to marked reductions in food intake mediated in part by changes in gut-brain communication. Here, we investigated for the first time whether weight loss after RYGB is associated with alterations in central noradrenaline (NA) neurotransmission. MATERIALS AND METHODS: We longitudinally studied 10 individuals with severe obesity (8 females; age 43.9 ± 13.1 years; body mass index (BMI) 46.5 ± 4.8 kg/m2) using (S,S)-[11C]O-methylreboxetine and positron emission tomography to estimate NA transporter (NAT) availability before and 6 months after surgery. NAT distribution volume ratios (DVR) were calculated by volume-of-interest analysis and the two-parameter multilinear reference tissue model (reference region: occipital cortex). RESULTS: The participants responded to RYGB surgery with a reduction in BMI of 12.0 ± 3.5 kg/m2 (p < 0.001) from baseline. This was paralleled by a significant reduction in DVR in the dorsolateral prefrontal cortex (pre-surgery 1.12 ± 0.04 vs. post-surgery 1.07 ± 0.04; p = 0.019) and a general tendency towards reduced DVR throughout the brain. Furthermore, we found a strong positive correlation between pre-surgery DVR in hypothalamus and the change in BMI (r = 0.78; p = 0.01). CONCLUSION: Reductions in BMI after RYGB surgery are associated with NAT availability in brain regions responsible for decision-making and homeostasis. However, these results need further validation in larger cohorts, to assess whether brain NAT availability could prognosticate the outcome of RYGB on BMI.


Assuntos
Derivação Gástrica , Obesidade Mórbida , Adulto , Índice de Massa Corporal , Feminino , Humanos , Pessoa de Meia-Idade , Norepinefrina , Obesidade Mórbida/cirurgia , Transmissão Sináptica , Redução de Peso
20.
Synapse ; 64(1): 30-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19728366

RESUMO

OBJECTIVES: The role of the norepinephrine transporter (NET) in cocaine dependence has never been demonstrated via in vivo imaging due to the lack of suitable NET radioligands. Here we report our preliminary studies evaluting the NET in individuals with cocaine dependence (COC) in comparison to healthy controls (HC) using (S,S)-[(11)C]methylreboxetine ([(11)C]MRB), the most promising C-11 labeled positron-emission tomography (PET) radioligand for NET developed to date. METHODS: Twenty two human volunteers (10 COC and 12 HC) underwent dynamic (11)C-MRB-PET acquisition using a High Resolution Research Tomograph (HRRT). Binding potential (BP(ND)) parametric images were computed using the simplified reference tissue model (SRTM2) with occipital cortex as reference region. BP(ND) values were compared between the two groups. RESULTS: Locus coeruleus (LC), hypothalamus, and pulvinar showed a significant inverse correlation with age among HC (age range = 25-54 years; P = 0.04, 0.009, 0.03 respectively). The BP(ND) was significantly increased in thalamus (27%; P < 0.02) and dorsomedial thalamic nuclei (30%; P < 0.03) in COC as compared to HC. Upon age normalization, the upregulation of NET in COC also reached significance in LC (63%, P < 0.01) and pulvinar (55%, P < 0.02) regions. CONCLUSION: Our results suggest that (a) brain NET concentration declines with age in HC, and (b) there is a significant upregulation of NET in thalamus and dorsomedial thalamic nucleus in COC as compared to HC. Our results also suggest that the use of [(11)C]MRB and HRRT provides an effective strategy for studying alterations of the NET system in humans.


Assuntos
Encéfalo/diagnóstico por imagem , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Morfolinas , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Adulto , Envelhecimento/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Cocaína/efeitos adversos , Inibidores da Captação de Dopamina/efeitos adversos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Reboxetina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA