Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 605(7909): 340-348, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344983

RESUMO

The COVID-19 pandemic caused by the SARS-CoV-2 virus remains a global public health crisis. Although widespread vaccination campaigns are underway, their efficacy is reduced owing to emerging variants of concern1,2. Development of host-directed therapeutics and prophylactics could limit such resistance and offer urgently needed protection against variants of concern3,4. Attractive pharmacological targets to impede viral entry include type-II transmembrane serine proteases (TTSPs) such as TMPRSS2; these proteases cleave the viral spike protein to expose the fusion peptide for cell entry, and thus have an essential role in the virus lifecycle5,6. Here we identify and characterize a small-molecule compound, N-0385, which exhibits low nanomolar potency and a selectivity index of higher than 106 in inhibiting SARS-CoV-2 infection in human lung cells and in donor-derived colonoids7. In Calu-3 cells it inhibits the entry of the SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). Notably, in the K18-human ACE2 transgenic mouse model of severe COVID-19, we found that N-0385 affords a high level of prophylactic and therapeutic benefit after multiple administrations or even after a single administration. Together, our findings show that TTSP-mediated proteolytic maturation of the spike protein is critical for SARS-CoV-2 infection in vivo, and suggest that N-0385 provides an effective early treatment option against COVID-19 and emerging SARS-CoV-2 variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Inibidores de Serina Proteinase , Animais , COVID-19/prevenção & controle , COVID-19/virologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos
2.
J Cell Mol Med ; 22(4): 2498-2509, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29441715

RESUMO

TMPRSS6 (matriptase-2) is a type II transmembrane serine protease involved in iron homoeostasis. At the cell surface of hepatocytes, TMPRSS6 cleaves haemojuvelin (HJV) and regulates the BMP/SMAD signalling pathway leading to production of hepcidin, a key regulator of iron absorption. Although four TMPRSS6 human isoforms and three mice Tmprss6 isoforms are annotated in databases (Ensembl and RefSeq), their relative expression or activity has not been studied. Analyses of RNA-seq data and RT-PCR from human tissues reveal that TMPRSS6 isoform 1 (TMPRSS6-1) and 3 are mostly expressed in human testis while TMPRSS6-2 and TMPRSS6-4 are the main transcripts expressed in human liver, testis and pituitary. Furthermore, we confirm the existence and analyse the relative expression of three annotated mice Tmprss6 isoforms. Using heterologous expression in HEK293 and Hep3B cells, we show that all human TMPRSS6 isoforms reach the cell surface but only TMPRSS6-1 undergoes internalization. Moreover, truncated TMPRSS6-3 or catalytically altered TMPRSS6-4 interact with HJV and prevent its cleavage by TMPRSS6-2, suggesting their potential role as dominant negative isoforms. Taken together, our results highlight the importance of understanding the precise function of each TMPRSS6 isoforms both in human and in mouse.


Assuntos
Homeostase/genética , Proteínas de Membrana/genética , Isoformas de Proteínas/genética , Serina Endopeptidases/genética , Transcriptoma/genética , Animais , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Proteína da Hemocromatose/genética , Humanos , Ferro/metabolismo , Camundongos , Transdução de Sinais/genética
3.
PLoS One ; 17(8): e0273825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36044454

RESUMO

TMPRSS6 is a type II transmembrane serine protease involved in iron homeostasis expressed as 4 isoforms in humans. TMPRSS6 isoform 2 downregulates hepcidin production by cleaving hemojuvelin and other surface proteins of hepatocytes. The functions of catalytically impaired isoforms 3 and 4 are still unknown. Here we demonstrate that TMPRSS6 isoforms 3 and 4 reduce the proteolytic activity of isoform 2 and uncover the ability of isoforms to interact. Moreover, we identified 49 potential protein partners common to TMPRSS6 isoforms, including TfR1, known to be involved in iron regulation. By co-expressing TMPRSS6 and TfR1, we show that TfR1 is cleaved and shed from the cell surface. Further, we demonstrate that TMPRSS6 isoforms 3 and 4 behave as dominant negative.


Assuntos
Proteínas de Membrana , Serina Endopeptidases , Membrana Celular/metabolismo , Hepcidinas/metabolismo , Humanos , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Serina Endopeptidases/metabolismo
4.
bioRxiv ; 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33972944

RESUMO

The COVID-19 pandemic caused by the SARS-CoV-2 virus remains a global public health crisis. Although widespread vaccination campaigns are underway, their efficacy is reduced against emerging variants of concern (VOCs) 1,2 . Development of host-directed therapeutics and prophylactics could limit such resistance and offer urgently needed protection against VOCs 3,4 . Attractive pharmacological targets to impede viral entry include type-II transmembrane serine proteases (TTSPs), such as TMPRSS2, whose essential role in the virus lifecycle is responsible for the cleavage and priming of the viral spike protein 5-7 . Here, we identify and characterize a small-molecule compound, N-0385, as the most potent inhibitor of TMPRSS2 reported to date. N-0385 exhibited low nanomolar potency and a selectivity index of >10 6 at inhibiting SARS-CoV-2 infection in human lung cells and in donor-derived colonoids 8 . Importantly, N-0385 acted as a broad-spectrum coronavirus inhibitor of two SARS-CoV-2 VOCs, B.1.1.7 and B.1.351. Strikingly, single daily intranasal administration of N-0385 early in infection significantly improved weight loss and clinical outcomes, and yielded 100% survival in the severe K18-human ACE2 transgenic mouse model of SARS-CoV-2 disease. This demonstrates that TTSP-mediated proteolytic maturation of spike is critical for SARS-CoV-2 infection in vivo and suggests that N-0385 provides a novel effective early treatment option against COVID-19 and emerging SARS-CoV-2 VOCs.

5.
Expert Opin Ther Pat ; 30(11): 807-824, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32887532

RESUMO

INTRODUCTION: Type II transmembrane serine proteases (TTSPs) of the human respiratory tract generate high interest owing to their ability, among other roles, to cleave surface proteins of respiratory viruses. This step is critical in the viral invasion of coronaviruses, including SARS-CoV-2 responsible for COVID-19, but also influenza viruses and reoviruses. Accordingly, these cell surface enzymes constitute appealing therapeutic targets to develop host-based therapeutics against respiratory viral diseases. Additionally, their deregulated levels or activity has been described in non-viral diseases such as fibrosis, cancer, and osteoarthritis, making them potential targets in these indications. AREAS COVERED: Areas covered: This review includes WIPO-listed patents reporting small molecules and peptide-based inhibitors of type II transmembrane serine proteases of the respiratory tract. EXPERT OPINION: Expert opinion: Several TTSPs of the respiratory tract represent attractive pharmacological targets in the treatment of respiratory infectious diseases (notably COVID-19 and influenza), but also against idiopathic pulmonary fibrosis and lung cancer. The current emphasis is primarily on TMPRSS2, matriptase, and hepsin, yet other TTSPs await validation. Compounds listed herein are predominantly peptidomimetic inhibitors, some with covalent reversible mechanisms of action and high potencies. Their selectivity profile, however, are often only partially characterized. Preclinical data are promising and warrant further advancement in the above diseases.


Assuntos
Infecções por Coronavirus/complicações , Infecções por Coronavirus/tratamento farmacológico , Patentes como Assunto , Pneumonia Viral/complicações , Pneumonia Viral/tratamento farmacológico , Doenças Respiratórias/tratamento farmacológico , Doenças Respiratórias/etiologia , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/uso terapêutico , COVID-19 , Humanos , Pandemias , Doenças Respiratórias/enzimologia
6.
Cell Chem Biol ; 26(11): 1559-1572.e9, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31543462

RESUMO

Iron overload disorders are characterized by the body's inability to regulate iron absorption and its storage which can lead to organ failures. Accumulated evidence has revealed that hepcidin, the master regulator of iron homeostasis, is negatively modulated by TMPRSS6 (matriptase-2), a liver-specific type II transmembrane serine protease (TTSP). Here, we report that treatment with a peptidomimetic inhibitor affecting TMPRSS6 activity increases hepcidin production in hepatic cells. Moreover, similar effects were observed when using non-peptidic inhibitors obtained through optimization of hits from high-throughput screening. Using HepG2 cells and human primary hepatocytes, we show that TMPRSS6 inhibitors block TMPRSS6-dependent hemojuvelin cleavage and increase HAMP expression and levels of secreted hepcidin.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Hepcidinas/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Inibidores de Serina Proteinase/química , Benzotiazóis/química , Sítios de Ligação , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Proteínas Ligadas por GPI/metabolismo , Proteína da Hemocromatose/metabolismo , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Peptidomiméticos , Proteólise/efeitos dos fármacos , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/metabolismo , Inibidores de Serina Proteinase/farmacologia , Regulação para Cima/efeitos dos fármacos
7.
Sci Rep ; 8(1): 12562, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135444

RESUMO

TMPRSS6, also known as matriptase-2, is a type II transmembrane serine protease that plays a major role in iron homeostasis by acting as a negative regulator of hepcidin production through cleavage of the BMP co-receptor haemojuvelin. Iron-refractory iron deficiency anaemia (IRIDA), an iron metabolism disorder, is associated with mutations in the TMPRSS6 gene. By analysing RNA-seq data encoding TMPRSS6 isoforms and other proteins involved in hepcidin production, we uncovered significant differences in expression levels between hepatocellular carcinoma (HCC) cell lines and normal human liver samples. Most notably, TMPRSS6 and HAMP expression was found to be much lower in HepG2 and Huh7 cells when compared to human liver samples. Furthermore, we characterized the common TMPRSS6 polymorphism V736A identified in Hep3B cells, the V795I mutation found in HepG2 cells, also associated with IRIDA, and the G603R substitution recently detected in two IRIDA patients. While variant V736A is as active as wild-type TMPRSS6, mutants V795I and G603R displayed significantly reduced proteolytic activity. Our results provide important information about commonly used liver cell models and shed light on the impact of two TMPRSS6 mutations associated with IRIDA.


Assuntos
Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Anemia Ferropriva/genética , Anemia Ferropriva/metabolismo , Células Hep G2 , Humanos , Ferro/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
8.
PLoS One ; 12(7): e0180259, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28671992

RESUMO

Changes in barrier function of the gastrointestinal tract are thought to contribute to the inflammatory bowel diseases Crohn's disease and ulcerative colitis. Previous work in our lab demonstrated that apical exposure of intestinal epithelial cell lines to serine proteases results in an increase in transepithelial electrical resistance (TER). However, the underlying mechanisms governing this response are unclear. We aimed to determine the requirement for proteolytic activity, epidermal growth factor receptor (EGFR) activation, and downstream intracellular signaling in initiating and maintaining enhanced barrier function following protease treatment using a canine intestinal epithelial cell line (SCBN). We also examined the role of phosphorylation of myosin regulatory light chain on the serine protease-induced increase in TER through. It was found that proteolytic activity of the serine proteases trypsin and matriptase is required to initiate and maintain the protease-mediated increase in TER. We also show that MMP-independent EGFR activation is essential to the sustained phase of the protease response, and that Src kinases may mediate EGFR transactivation. PI3-K and ERK1/2 signaling were important in reaching a maximal increase in TER following protease stimulation; however, their upstream activators are yet to be determined. CK2 inhibition prevented the increase in TER induced by serine proteases. The bradykinin B(2) receptor was not involved in the change in TER in response to serine proteases, and no change in phosphorylation of MLC was observed after trypsin or matriptase treatment. Taken together, our data show a requirement for ongoing proteolytic activity, EGFR transactivation, as well as downstream PI3-K, ERK1/2, and CK2 signaling in protease-mediated barrier enhancement of intestinal epithelial cells. The pathways mediating enhanced barrier function by proteases may be novel therapeutic targets for intestinal disorders characterized by disrupted epithelial barrier function.


Assuntos
Mucosa Intestinal/fisiologia , Serina Proteases/metabolismo , Transdução de Sinais , Proteína ADAM17/metabolismo , Animais , Catálise , Linhagem Celular , Cães , Receptores ErbB/metabolismo , Metaloproteinases da Matriz/metabolismo , Proteólise
9.
Eur J Med Chem ; 129: 110-123, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28219045

RESUMO

Matriptase-2, a type II transmembrane serine protease (TTSP), is expressed in the liver and regulates iron homeostasis via the cleavage of hemojuvelin. Matriptase-2 emerges as an attractive target for the treatment of conditions associated with iron overload, such as hemochromatosis or beta-thalassemia. Starting from the crystal structure of its closest homolog matriptase, we constructed a homology model of matriptase-2 in order to further optimize the selectivity of serine trap peptidomimetic inhibitors for matriptase-2 vs matriptase. Careful modifications of the P4, P3 and P2 positions with the help of unnatural amino acids led to a thorough understanding of Structure-Activity Relationship and a >60-fold increase in selectivity for matriptase-2 vs matriptase. Additionally, the introduction of unnatural amino acids led to significant increases in plasma stability. Such compounds represent useful pharmacological tools to test matriptase-2 inhibition in a context of iron overload.


Assuntos
Aminoácidos/química , Inibidores Enzimáticos/farmacologia , Sobrecarga de Ferro/tratamento farmacológico , Proteínas de Membrana/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Homeostase/efeitos dos fármacos , Humanos , Ferro/metabolismo , Modelos Moleculares , Sensibilidade e Especificidade , Serina Endopeptidases , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA