RESUMO
The Canada-Alberta Oil Sands Monitoring (OSM) Program began long-term surface water quality monitoring on the lower Athabasca River in 2012. Sampling of low level, bio-accumulative polycyclic aromatic compounds (PACs) targeted a suite of parent and alkylated compounds in the Athabasca River (AR) mainstem using semi-permeable membrane devices (SPMDs). Samples were collected along a gradient from upstream reference near Athabasca, Alberta, through exposure to the Athabasca oil sands deposit (AOSD), various tributary inflows, and mining activities within the OSMA, to downstream recovery near Wood Buffalo National Park (WBNP) and reference on the Slave River. The program adapted over the years, shifting in response to program review and environmental events. The AOSD chemical fingerprint was present in samples collected within the AOSD, through the oil sands mineable area (OSMA), downstream to recovery from 2013 to 2019. PACs were dominated by alkylated phenanthrenes/anthracenes (PAs) and dibenzothiophenes (Ds), with elevated levels of alkylated fluorenes (Fs), naphthalenes (Ns), fluoranthenes/pyrenes (FlPys) and benzo[a]anthracenes/chrysenes (BaACs), increasing in concentration from C1 < C2 < C3 < C4. Concentrations of these petrogenic PACs were at their highest within the OSMA and downstream of tributaries. The AOSD fingerprint was absent from sites located outside of the influence of the AOSD and downstream of the Peace-Athabasca Delta on the Slave River. PAC concentrations in the AR increased with mainstem discharge and loadings from tributaries, were moderated by the PAD, and diluted by the Peace River. This work bolsters the baseline PAC information previously reported for the Athabasca River and waters downstream, reporting 7 years of data, from all sites within the mainstem monitoring program, and exploring potential regional and hydrological drivers of these between sites and over time.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes Químicos da Água , Campos de Petróleo e Gás , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Compostos Orgânicos , Alberta , Antracenos , Poluentes Químicos da Água/análiseRESUMO
Diverse environmental and anthropogenic factors, such as the ongoing reservoir constructions may influence riverine dissolved organic matter (DOM) properties. This has important implications for river water quality, particularly when reservoirs are a source of drinking water. Simultaneous studies of multidecadal trends in dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are scarce. We studied the patterns in DOC and DON concentration in two major rivers of the South Saskatchewan River (SSR) basin over a 42-year period (1978-2019). We also examined the impact of a large reservoir on riverine DOC properties. Contrary to many studies, we did not find a long-term increase in DOC and DON concentration, and DOC and DON patterns were not always synchronous. In an agriculture dominated watershed like the SSR basin, agricultural land use (e.g., nitrogen-fertilizer application) could influence DOC and DON concentration differently, potentially resulting in asynchronous patterns over time. River discharge was an important driver of DOM patterns. Regional precipitation in the lower SSR basin may also influence DOM patterns in locations where runoff contribution is greater. These regional factors explained greater variability in DOM compared to global scale indices (e.g., Pacific decadal oscillation) due to their direct control on DOM. A travel time corrected approach to account for the lengthy reservoir turnover time showed that a large reservoir caused a reduction in allochthonous DOC characteristics through photodegradation and perhaps, an increase in autochthonous characteristics. Our results illustrate: 1) the increase in DOM concentrations seen in the northern hemisphere is not present in semi-arid prairie rivers, 2) Controls on different DOM components could be different, and 3) large reservoirs may modify riverine DOC composition due to longer water residence time.