RESUMO
Learning more about the biodiversity and composition of arbuscular mycorrhizal fungi (AMF) under alternative agricultural management scenarios may be important to the sustainable intensification of switchgrass grown as a bioenergy crop. Using PacBio single-molecule sequencing and taxonomic resolution to the level of amplicon sequence variant (ASV), we assessed the effects of nitrogen amendment on AMF associating with switchgrass and explored relationships between AMF and switchgrass yield across three sites of various productivities in Wisconsin. Nitrogen amendment had little effect on AMF diversity metrics or community composition. While AMF ASV diversity was not correlated with switchgrass yield, AMF family richness and switchgrass yield had a strong, positive relationship at one of our three sites. Each of our sites was dominated by unique ASVs of the species Paraglomus brasilianum, indicating regional segregation of AMF at the intraspecific level. Our molecular biodiversity survey identified putative core members of the switchgrass microbiome, as well as novel clades of AMF, especially in the order Paraglomerales and the genus Nanoglomus Furthermore, our phylogenies unite the cosmopolitan, soil-inhabiting clade deemed GS24 with Pervetustaceae, an enigmatic family prevalent in stressful environments. Future studies should isolate and characterize the novel genetic diversity found in switchgrass agroecosystems and explore the potential yield benefits of AMF richness.IMPORTANCE We assessed the different species of beneficial fungi living in agricultural fields of switchgrass, a large grass grown for biofuels, using high-resolution DNA sequencing. Contrary to our expectations, the fungi were not greatly affected by fertilization. However, we found a positive relationship between plant productivity and the number of families of beneficial fungi at one site. Furthermore, we sequenced many species that could not be identified with existing reference databases. One group of fungi was highlighted in an earlier study for being widely distributed but of unknown taxonomy. We discovered that this group belonged to a family called Pervetustaceae, which may benefit switchgrass in stressful environments. To produce higher-yielding switchgrass in a more sustainable manner, it could help to study these undescribed fungi and the ways in which they may contribute to greater switchgrass yield in the absence of fertilization.
Assuntos
Fertilizantes/análise , Micobioma/fisiologia , Micorrizas/fisiologia , Panicum/microbiologia , Microbiologia do Solo , Agricultura , Biocombustíveis , Nitrogênio/administração & dosagem , WisconsinRESUMO
A case-control study of sporadic amyotrophic lateral sclerosis (ALS) in a mountainous village in the French Alps discovered an association of cases with a history of eating wild fungi (false morels) collected locally and initially identified and erroneously reported as Gyromitra gigas. Specialist re-examination of dried specimens of the ALS-associated fungi demonstrated they were members of the G. esculenta group, namely G. venenata and G. esculenta, species that have been reported to contain substantially higher concentrations of gyromitrin than present in G. gigas. Gyromitrin is metabolized to monomethylhydrazine, which is responsible not only for the acute oral toxic and neurotoxic properties of false morels but also has genotoxic potential with proposed mechanistic relevance to the etiology of neurodegenerative disease. Most ALS patients had a slow- or intermediate-acetylator phenotype predicted by N-acetyltransferase-2 (NAT2) genotyping, which would increase the risk for neurotoxic and genotoxic effects of gyromitrin metabolites.
RESUMO
Gyromitrin (acetaldehyde N-methyl-N-formylhydrazone) and its homologs are deadly mycotoxins produced most infamously by the lorchel (also known as false morel) Gyromitra esculenta, which is paradoxically consumed as a delicacy in some parts of the world. There is much speculation about the presence of gyromitrin in other species of the lorchel family (Discinaceae), but no studies have broadly assessed its distribution. Given the history of poisonings associated with the consumption of G. esculenta and G. ambigua, we hypothesized that gyromitrin evolved in the last common ancestor of these taxa and would be present in their descendants with adaptive loss of function in the nested truffle clade, Hydnotrya. To test this hypothesis, we developed a sensitive analytical derivatization method for the detection of gyromitrin using 2,4-dinitrobenzaldehyde as the derivatization reagent. In total, we analyzed 66 specimens for the presence of gyromitrin over 105 tests. Moreover, we sequenced the nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode) and nuc 28S rDNA to assist in species identification and to infer a supporting phylogenetic tree. We detected gyromitrin in all tested specimens from the G. esculenta group as well as G. leucoxantha. This distribution is consistent with a model of rapid evolution coupled with horizontal transfer, which is typical for secondary metabolites. We clarified that gyromitrin production in Discinaceae is both discontinuous and more limited than previously thought. Further research is required to elucidate the gyromitrin biosynthesis gene cluster and its evolutionary history in lorchels.
Assuntos
Acetaldeído , Filogenia , Cromatografia Líquida de Alta Pressão , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genéticaRESUMO
Environmental DNA analyses of fungal communities typically reveal a much larger diversity than can be ascribed to known species. Much of this hidden diversity lies within undescribed fungal lineages, especially the early diverging fungi (EDF). Although these EDF often represent new lineages even at the phylum level, they have never been cultured, making their morphology and ecology uncertain. One of the methods to characterize these uncultured fungi is a single-cell DNA sequencing approach. In this study, we established a large data set of single-cell sequences of EDF by manually isolating and photographing parasitic fungi on various hosts such as algae, protists, and micro-invertebrates, combined with subsequent long-read sequencing of the ribosomal DNA locus (rDNA). We successfully obtained rDNA sequences of 127 parasitic fungal cells, which clustered into 71 phylogenetic lineages belonging to seven phylum-level clades of EDF: Blastocladiomycota, Chytridiomycota, Aphelidiomycota, Rozellomycota, and three unknown phylum-level clades. Most of our single cells yielded novel sequences distinguished from both described taxa and existing metabarcoding data, indicating an expansive and hidden diversity of parasitic taxa of EDF. We also revealed an unexpected diversity of endobiotic Olpidium-like chytrids and hyper-parasitic lineages. Overall, by combining photographs of parasitic fungi with phylogenetic analyses, we were able to better understand the ecological function and morphology of many of the branches on the fungal tree of life known only from DNA sequences. IMPORTANCE Much of the diversity of microbes from natural habitats, such as soil and freshwater, comprise species and lineages that have never been isolated into pure culture. In part, this stems from a bias of culturing in favor of saprotrophic microbes over the myriad symbiotic ones that include parasitic and mutualistic relationships with other taxa. In the present study, we aimed to shed light on the ecological function and morphology of the many undescribed lineages of aquatic fungi by individually isolating and sequencing molecular barcodes from 127 cells of host-associated fungi using single-cell sequencing. By adding these sequences and their photographs into the fungal tree, we were able to understand the morphology of reproductive and vegetative structures of these novel fungi and to provide a hypothesized ecological function for them. These individual host-fungal cells revealed themselves to be complex environments despite their small size; numerous samples were hyper-parasitized with other zoosporic fungal lineages such as Rozellomycota.