Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39063183

RESUMO

Juvenile polyposis syndrome (JPS) is an inherited autosomal dominant condition that predisposes to the development of juvenile polyps throughout the gastrointestinal (GI) tract, and it poses an increased risk of GI malignancy. Germline causative variants were identified in the SMAD4 gene in a subset (20%) of JPS cases. Most SMAD4 germline genetic variants published to date are missense, nonsense, and frameshift mutations. SMAD4 germline alterations predicted to result in aberrant splicing have rarely been reported. Here, we report two unrelated Italian families harboring two different SMAD4 intronic variants, c.424+5G>A and c.425-9A>G, which are clinically associated with colorectal cancer and/or juvenile GI polyps. In silico prediction analysis, in vitro minigene assays, and RT-PCR showed that the identified variants lead to aberrant SMAD4 splicing via the exonization of intronic nucleotides, resulting in a premature stop codon. This is expected to cause the production of a truncated protein. This study expands the landscape of SMAD4 germline genetic variants associated with GI polyposis and/or cancer. Moreover, it emphasizes the importance of the functional characterization of SMAD4 splicing variants through RNA analysis, which can provide new insights into genetic disease variant interpretation, enabling tailored genetic counseling, management, and surveillance of patients with GI polyposis and/or cancer.


Assuntos
Polipose Intestinal , Síndromes Neoplásicas Hereditárias , Splicing de RNA , Proteína Smad4 , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação em Linhagem Germinativa , Polipose Intestinal/genética , Polipose Intestinal/congênito , Íntrons/genética , Síndromes Neoplásicas Hereditárias/genética , Linhagem , Splicing de RNA/genética , Proteína Smad4/genética
2.
Int J Mol Sci ; 25(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39273459

RESUMO

Background: The minor G-allele of FOXO3 rs2802292 is associated with human longevity. The aim of this study was to test the protective effect of the variant against the association with type 2 Diabetes and NAFLD. Methods: rs2802292 was genotyped in a large population of middle-aged subjects (n = 650) from a small city in Southern Italy. All participants were interviewed to collect information about lifestyle and dietary habits; clinical characteristics were recorded, and blood samples were collected from all subjects. The association between rs2802292 and NAFLD or diabetes was tested using a logistic model and mediation analysis adjusted for covariates. Results: Overall, the results indicated a statistical association between diabetes and rs2802292, especially for the TT genotype (OR = 2.14, 1.01 to 4.53 95% C.I., p = 0.05) or in any case for those who possess the G-allele (OR = 0.45, 0.25 to 0.81 95% C.I., p = 0.008). Furthermore, we found a mediation effect of rs2802292 on diabetes (as mediator) and NAFLD. There is no direct relationship between rs2802292 and NAFLD, but the effect is direct (ß = 0.10, -0.003 to 0.12 95% C.I., p = 0.04) on diabetes, but only in TT genotypes. Conclusions: The data on our cohort indicate that the longevity-associated FOXO3 variant may have protective effects against diabetes and NAFLD.


Assuntos
Diabetes Mellitus Tipo 2 , Proteína Forkhead Box O3 , Predisposição Genética para Doença , Hepatopatia Gordurosa não Alcoólica , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Feminino , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Itália/epidemiologia , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiologia , Proteína Forkhead Box O3/genética , Estudos de Coortes , Genótipo , Alelos , Adulto
3.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139222

RESUMO

Classic galactosemia is an autosomal recessive inherited liver disorder of carbohydrate metabolism caused by deficient activity of galactose-1-phosphate uridylyltransferase (GALT). While a galactose-restricted diet is lifesaving, most patients still develop long-term complications. In this study, we report on a two-week-old female patient who is a compound heterozygote for a known pathogenic variant (p.K285N) and a novel missense variant (p.A303D) in the GALT gene. Segregation analysis showed that the patient inherited the p.K285N pathogenic variant from her father and the p.A303D variant from her mother. A bioinformatics analysis to predict the impact of the p.A303D missense variant on the structure and stability of the GALT protein revealed that it may be pathogenic. Based on this finding, we performed a literature review of all GALT missense variants identified in homozygous and compound heterozygous galactosemia patients carrying the p.K285N pathogenic variant to explore their molecular effects on the clinical phenotype of the disease. Our analysis revealed that these missense variants are responsible for a wide range of molecular defects. This study expands the clinical and mutational spectrum in classic galactosemia and reinforces the importance of understanding the molecular consequences of genetic variants to incorporate genetic analysis into clinical care.


Assuntos
Galactosemias , UTP-Hexose-1-Fosfato Uridililtransferase , Feminino , Humanos , Galactose , Galactosemias/genética , Mutação , Mutação de Sentido Incorreto , UTP-Hexose-1-Fosfato Uridililtransferase/genética , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo
4.
J Med Genet ; 57(5): 356-360, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31591141

RESUMO

Germline mutations of the APC gene, which encodes a multidomain protein of 2843 amino acid residues, cause familial adenomatous polyposis (FAP). Three FAP clinical variants are correlated with the location of APC mutations: (1) classic FAP with profuse polyposis (>1000 adenomas), associated with mutations from codon 1250 to 1424; (2) attenuated FAP (<100 adenomas), associated with mutations at APC extremities (before codon 157 and after codon 1595); (3) classic FAP with intermediate colonic polyposis (100-1000 adenomas), associated with mutations located in the remaining part of APC In an effort to decipher the clinical phenotype associated with APC C-terminal germline truncating mutations in patients with FAP, after screening APC mutations in one family whose members (n=4) developed gastric polyposis, colon oligo-polyposis and desmoid tumours, we performed a literature meta-analysis of clinically characterised patients (n=97) harbouring truncating mutations in APC C-terminus. The APC distal mutations identified in this study cluster with a phenotype characterised by colon oligo-polyposis, diffuse gastric polyposis and desmoid tumours. In conclusion, we describe a novel FAP clinical variant, which we propose to refer to as Gastric Polyposis and Desmoid FAP, that may require tailored management.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Predisposição Genética para Doença , Neoplasias Gástricas/genética , Polipose Adenomatosa do Colo/epidemiologia , Polipose Adenomatosa do Colo/patologia , Adulto , Feminino , Fibromatose Agressiva/patologia , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/patologia
5.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201893

RESUMO

Lynch syndrome is a hereditary cancer-predisposing syndrome caused by germline defects in DNA mismatch repair (MMR) genes such as MLH1, MSH2, MSH6, and PMS2. Carriers of pathogenic mutations in these genes have an increased lifetime risk of developing colorectal cancer (CRC) and other malignancies. Despite intensive surveillance, Lynch patients typically develop CRC after 10 years of follow-up, regardless of the screening interval. Recently, three different molecular models of colorectal carcinogenesis were identified in Lynch patients based on when MMR deficiency is acquired. In the first pathway, adenoma formation occurs in an MMR-proficient background, and carcinogenesis is characterized by APC and/or KRAS mutation and IGF2, NEUROG1, CDK2A, and/or CRABP1 hypermethylation. In the second pathway, deficiency in the MMR pathway is an early event arising in macroscopically normal gut surface before adenoma formation. In the third pathway, which is associated with mutations in CTNNB1 and/or TP53, the adenoma step is skipped, with fast and invasive tumor growth occurring in an MMR-deficient context. Here, we describe the association between molecular and histological features in these three routes of colorectal carcinogenesis in Lynch patients. The findings summarized in this review may guide the use of individualized surveillance guidelines based on a patient's carcinogenesis subtype.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Carcinogênese/genética , Neoplasias Colorretais Hereditárias sem Polipose/etiologia , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Reparo de Erro de Pareamento de DNA/genética , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Masculino , Modelos Biológicos , Fenótipo , Fatores de Risco
6.
BMC Med Genet ; 15: 59, 2014 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-24884915

RESUMO

BACKGROUND: Association of melanoma, neural system tumors and germ line mutations at the 9p21 region in the CDKN2A, CDKN2B and CDKN2BAS genes has been reported in a small number of families worldwide and described as a discrete syndrome in melanoma families registered as a rare disease, the melanoma-astrocytoma syndrome. CASE PRESENTATION: We here studied two young patients developing melanoma after radiotherapy for astrocytoma, both reporting lack of family history for melanoma or neural system tumors at genetic counselling. Patient A is a girl treated for anaplastic astrocytoma at 10 years and for multiple melanomas on the scalp associated to dysplastic nevi two years later. Her monozygotic twin sister carried dysplastic nevi and a slow growing, untreated cerebral lesion. Direct sequencing analysis showed no alterations in melanoma susceptibility genes including CDKN2A, CDK4, MC1R and MITF or in TP53. By microsatellite analysis, multiplex ligation-dependent probe amplification, and array comparative genomic hybridization a deletion including the CDKN2A, CDKN2B and CDKN2BAS gene cluster was detected in both twin sisters, encompassing a large region at 9p21.3 and occurring de novo after the loss of one paternal allele.Patient B is a boy of 7 years when treated for astrocytoma then developing melanoma associated to congenital nevi on the head 10 years later: sequencing and multiplex ligation-dependent probe amplification revealed a normal profile of the CDKN2A/CDKN2B/CDKN2BAS region. Array comparative genomic hybridization confirmed the absence of deletions at 9p21.3 and failed to reveal known pathogenic copy number variations. CONCLUSIONS: By comparison with the other germ line deletions at the CDKN2A, CDKN2B and CDKN2BAS gene cluster reported in melanoma susceptible families, the deletion detected in the two sisters is peculiar for its de novo origin and for its extension, as it represents the largest constitutive deletion at 9p21.3 region identified so far.In addition, the two studied cases add to other evidence indicating association of melanoma with exposure to ionizing radiation and with second neoplasm after childhood cancer. Melanoma should be considered in the monitoring of pigmented lesions in young cancer patients.


Assuntos
Astrocitoma/diagnóstico , Astrocitoma/genética , Deleção Cromossômica , Cromossomos Humanos Par 9 , Melanoma/diagnóstico , Melanoma/genética , Neoplasias do Sistema Nervoso/diagnóstico , Neoplasias do Sistema Nervoso/genética , Adolescente , Alelos , Biópsia , Criança , Hibridização Genômica Comparativa , Feminino , Genótipo , Mutação em Linhagem Germinativa , Humanos , Masculino , Repetições de Microssatélites/genética , Deleção de Sequência
7.
Am J Med Genet A ; 164A(7): 1666-76, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24700646

RESUMO

Phelan-McDermid syndrome (22q13.3 deletion syndrome) is a contiguous gene disorder resulting from the deletion of the distal long arm of chromosome 22. SHANK3, a gene within the minimal critical region, is a candidate gene for the major neurological features of this syndrome. We report clinical and molecular data from a study of nine patients with overlapping interstitial deletions in 22q13 not involving SHANK3. All of these deletions overlap with the largest, but not with the smallest deletion associated with Phelan-McDermid syndrome. The deletion sizes and breakpoints varied considerably among our patients, with the largest deletion spanning 6.9 Mb and the smallest deletion spanning 2.7 Mb. Eight out of nine patients had a de novo deletion, while in one patient the origin of deletion was unknown. These patients shared clinical features common to Phelan-McDermid syndrome: developmental delay (11/12), speech delay (11/12), hypotonia (9/12), and feeding difficulties (7/12). Moreover, the majority of patients (8/12) exhibited macrocephaly. In the minimal deleted region, we identified two candidate genes, SULT4A1 and PARVB (associated with the PTEN pathway), which could be associated in our cohort with neurological features and macrocephaly/hypotonia, respectively. This study suggests that the haploinsufficiency of genes in the 22q13 region beside SHANK3 contributes to cognitive and speech development, and that these genes are involved in the phenotype associated with the larger Phelan-McDermid syndrome 22q13 deletions. Moreover, because the deletions in our patients do not involve the SHANK3 gene, we posit the existence of a new contiguous gene syndrome proximal to the smallest terminal deletions in the 22q13 region.


Assuntos
Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 22 , Proteínas do Tecido Nervoso/genética , Criança , Pré-Escolar , Cromossomos Humanos Par 22/genética , Hibridização Genômica Comparativa , Diagnóstico Diferencial , Fácies , Feminino , Humanos , Lactente , Masculino , Fenótipo , Síndrome
8.
Cells ; 13(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39195204

RESUMO

Colorectal cancer (CRC) ranks third in terms of cancer incidence worldwide and is responsible for 8% of all deaths globally. Approximately 10% of CRC cases are caused by inherited pathogenic mutations in driver genes involved in pathways that are crucial for CRC tumorigenesis and progression. These hereditary mutations significantly increase the risk of initial benign polyps or adenomas developing into cancer. In recent years, the rapid and accurate sequencing of CRC-specific multigene panels by next-generation sequencing (NGS) technologies has enabled the identification of several recurrent pathogenic variants with established functional consequences. In parallel, rare genetic variants that are not characterized and are, therefore, called variants of uncertain significance (VUSs) have also been detected. The classification of VUSs is a challenging task because each amino acid has specific biochemical properties and uniquely contributes to the structural stability and functional activity of proteins. In this scenario, the ability to computationally predict the effect of a VUS is crucial. In particular, in silico prediction methods can provide useful insights to assess the potential impact of a VUS and support additional clinical evaluation. This approach can further benefit from recent advances in artificial intelligence-based technologies. In this review, we describe the main in silico prediction tools that can be used to evaluate the structural and functional impact of VUSs and provide examples of their application in the analysis of gene variants involved in hereditary CRC syndromes.


Assuntos
Neoplasias Colorretais , Simulação por Computador , Humanos , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Variação Genética , Mutação/genética
9.
Biochim Biophys Acta Rev Cancer ; : 189203, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39461625

RESUMO

Drug resistance is a significant challenge in oncology and is driven by various mechanisms, among which a crucial role is played by enhanced DNA repair. Thus, targeting DNA damage response (DDR) factors with specific inhibitors is emerging as a promising therapeutic strategy. An important process involved in the modulation of DNA repair pathways, and hence in drug resistance, is post-translational modification (PTM). PTMs such as methylation affect protein function and are critical in cancer biology. Methylation is catalyzed by specific enzymes called protein methyltransferases. In recent years, the SET domain-containing N-lysine methyltransferase SMYD3 has emerged as a significant oncogenic driver. It is overexpressed in several tumor types and plays a signal-dependent role in promoting gastrointestinal cancer formation and development. Recent evidence indicates that SMYD3 is involved in the maintenance of cancer genome integrity and contributes to drug resistance in response to genotoxic stress by regulating DDR mechanisms. Several potential SMYD3 interactors implicated in DNA repair, especially in the homologous recombination and non-homologous end-joining pathways, have been identified by in silico analyses and confirmed by experimental validation, showing that SMYD3 promotes DDR protein interactions and enzymatic activity, thereby sustaining cancer cell survival. Targeting SMYD3, in combination with standard or targeted therapy, shows promise in overcoming drug resistance in colorectal, gastric, pancreatic, breast, endometrial, and lung cancer models, supporting the integration of SMYD3 inhibition into cancer treatment regimens. In this review, we describe the role played by SMYD3 in drug resistance and analyze its potential as a molecular target to sensitize cancer cells to treatment.

10.
J Exp Clin Cancer Res ; 43(1): 151, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38812026

RESUMO

BACKGROUND: SMYD3 has been found implicated in cancer progression. Its overexpression correlates with cancer growth and invasion, especially in gastrointestinal tumors. SMYD3 transactivates multiple oncogenic mechanisms, favoring cancer development. Moreover, it was recently shown that SMYD3 is required for DNA restoration by promoting homologous recombination (HR) repair. METHODS: In cellulo and in vivo models were employed to investigate the role of SMYD3 in cancer chemoresistance. Analyses of SMYD3-KO cells, drug-resistant cancer cell lines, patients' residual gastric or rectal tumors that were resected after neoadjuvant therapy and mice models were performed. In addition, the novel SMYD3 covalent inhibitor EM127 was used to evaluate the impact of manipulating SMYD3 activity on the sensitization of cancer cell lines, tumorspheres and cancer murine models to chemotherapeutics (CHTs). RESULTS: Here we report that SMYD3 mediates cancer cell sensitivity to CHTs. Indeed, cancer cells lacking SMYD3 functions showed increased responsiveness to CHTs, while restoring its expression promoted chemoresistance. Specifically, SMYD3 is essential for the repair of CHT-induced double-strand breaks as it methylates the upstream sensor ATM and allows HR cascade propagation through CHK2 and p53 phosphorylation, thereby promoting cancer cell survival. SMYD3 inhibition with the novel compound EM127 showed a synergistic effect with CHTs in colorectal, gastric, and breast cancer cells, tumorspheres, and preclinical colorectal cancer models. CONCLUSIONS: Overall, our results show that targeting SMYD3 may be an effective therapeutic strategy to overcome chemoresistance.


Assuntos
Dano ao DNA , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Histona-Lisina N-Metiltransferase , Humanos , Animais , Camundongos , Reparo do DNA/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Feminino
11.
Comput Struct Biotechnol J ; 21: 5240-5248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954147

RESUMO

SMDY3 is a histone-lysine N-methyltransferase involved in several oncogenic processes and is believed to play a major role in various cancer hallmarks. Recently, we identified ATM, BRCA2, CHK2, MTOR, BLM, MET, AMPK, and p130 as direct SMYD3 interactors by taking advantage of a library of rare tripeptides, which we first tested for their in vitro binding affinity to SMYD3 and then used as in silico probes to systematically search the human proteome. Here, we used this innovative approach to identify further SMYD3-interacting proteins involved in crucial cancer pathways and found that the chromatin remodeling factors EP300 and TRRAP interact directly with SMYD3, thus linking SMYD3 to the emerging 'nonmutational epigenetic reprogramming' cancer hallmark. Of note, we validated these interactions in gastrointestinal cancer cell lines, including HCT-116 cells, which harbor a C-terminal truncating mutation in EP300, suggesting that EP300 binds to SMYD3 via its N-terminal region. While additional studies are required to ascertain the functional mechanisms underlying these interactions and their significance, the identification of two novel SMYD3 interactors involved in epigenetic cancer hallmark pathways adds important pieces to the puzzle of how SMYD3 exerts its oncogenic role.

12.
Cell Biosci ; 13(1): 223, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041178

RESUMO

BACKGROUND: Activation of the Wnt pathway has been linked to colorectal cancer (CRC). Previous reports suggest that Wnt3a can activate p38. Besides, p38α feeds into the canonical Wnt/ß-catenin pathway by inhibiting GSK3ß through phosphorylation. Recently, we identified p38α as a new druggable member of ß-catenin chromatin-associated kinase complexes in CRC. METHODS: The functional relationship between p38α and ß-catenin was characterized in CRC cells, patient-derived CRC stem cells, patient-derived tumor intestinal organoids, and in vivo models (C57BL/6-APCMin/+ mice). The role of p38α in ß-catenin transcriptional activity was assessed by pharmacological inhibition with ralimetinib. RESULTS: We used the GSK3ß inhibitor TWS-119, which promotes the activation of Wnt signaling, to uncouple p38α nuclear/cytoplasmatic functions in the Wnt pathway. Upon GSK3ß inhibition, nuclear p38α phosphorylates ß-catenin at residues S111 and T112, allowing its binding to promoter regions of Wnt target genes and the activation of a transcriptional program implicated in cancer progression. If p38α is pharmacologically inhibited in addition to GSK3ß, ß-catenin is prevented from promoting target gene transcription, which is expected to impair carcinogenesis. CONCLUSIONS: p38α seems to play a dual role as a member of the ß-catenin destruction complex and as a ß-catenin chromatin-associated kinase in CRC. This finding may help elucidate mechanisms contributing to human colon tumor pathogenesis and devise new strategies for personalized CRC treatment.

13.
Cells ; 12(20)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887325

RESUMO

Gastric cancer (GC) is the third most deadly cancer worldwide. Considerable efforts have been made to find targetable drivers in order to improve patient outcomes. MET is one of the most important factors involved in GC initiation and progression as it plays a major role in GC invasiveness and is related to cancer stemness. Unfortunately, treatment strategies targeting MET are still limited, with a proportion of patients responding to therapy but later developing resistance. Here, we showed that MET is a molecular partner of the SMYD3 methyltransferase in GC cells. Moreover, we found that SMYD3 pharmacological inhibition affects the HGF/MET downstream signaling pathway. Extensive cellular analyses in GC models indicated that EM127, a novel active site-selective covalent SMYD3 inhibitor, can be used as part of a synergistic approach with MET inhibitors in order to enhance the targeting of the HGF/MET pathway. Importantly, our data were confirmed in a 3D GC cell culture system, which was used as a surrogate to evaluate stemness characteristics. Our findings identify SMYD3 as a promising therapeutic target to impair the HGF/MET pathway for the treatment of GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Transdução de Sinais , Fator de Crescimento de Hepatócito , Histona-Lisina N-Metiltransferase/metabolismo
14.
Cells ; 12(22)2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37998381

RESUMO

Cells respond to DNA damage by activating a complex array of signaling networks, which include the AMPK and mTOR pathways. After DNA double-strand breakage, ATM, a core component of the DNA repair system, activates the AMPK-TSC2 pathway, leading to the inhibition of the mTOR cascade. Recently, we showed that both AMPK and mTOR interact with SMYD3, a methyltransferase involved in DNA damage response. In this study, through extensive molecular characterization of gastrointestinal and breast cancer cells, we found that SMYD3 is part of a multiprotein complex that is involved in DNA damage response and also comprises AMPK and mTOR. In particular, upon exposure to the double-strand break-inducing agent neocarzinostatin, SMYD3 pharmacological inhibition suppressed AMPK cascade activation and thereby promoted the mTOR pathway, which reveals the central role played by SMYD3 in the modulation of AMPK-mTOR signaling balance during cancer cell response to DNA double-strand breaks. Moreover, we found that SMYD3 can methylate AMPK at the evolutionarily conserved residues Lys411 and Lys424. Overall, our data revealed that SMYD3 can act as a bridge between the AMPK and mTOR pathways upon neocarzinostatin-induced DNA damage in gastrointestinal and breast cancer cells.


Assuntos
Neoplasias da Mama , Zinostatina , Humanos , Feminino , Proteínas Quinases Ativadas por AMP/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Dano ao DNA , DNA , Histona-Lisina N-Metiltransferase/genética
15.
Cancers (Basel) ; 15(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894428

RESUMO

Lynch syndrome (LS) is an inherited cancer susceptibility syndrome caused by germline mutations in a DNA mismatch repair (MMR) gene or in the EPCAM gene. LS is associated with an increased lifetime risk of colorectal cancer (CRC) and other malignancies. The screening algorithm for LS patient selection is based on the identification of CRC specimens that have MMR loss/high microsatellite instability (MSI-H) and are wild-type for BRAFV600. Here, we sought to clinically and molecularly characterize patients with these features. From 2017 to 2023, 841 CRC patients were evaluated for MSI and BRAFV600E mutation status, 100 of which showed MSI-H. Of these, 70 were wild-type for BRAFV600. Among these 70 patients, 30 were genetically tested for germline variants in hereditary cancer predisposition syndrome genes. This analysis showed that 19 of these 30 patients (63.3%) harbored a germline pathogenic or likely pathogenic variant in MMR genes, 2 (6.7%) harbored a variant of unknown significance (VUS) in MMR genes, 3 (10%) harbored a VUS in other cancer-related genes, and 6 (20%) were negative to genetic testing. These findings highlight the importance of personalized medicine for tailored genetic counseling, management, and surveillance of families with LS and other hereditary cancer syndromes.

16.
Cancers (Basel) ; 16(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201484

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies worldwide. While population-wide screening recommendations for PDAC in asymptomatic individuals are not achievable due to its relatively low incidence, pancreatic cancer surveillance programs are recommended for patients with germline causative variants in PDAC susceptibility genes or a strong family history. In this study, we sought to determine the prevalence and significance of germline alterations in major genes (ATM, BRCA1, BRCA2, CDKN2A, EPCAM, MLH1, MSH2, MSH6, PALB2, PMS2, STK11, TP53) involved in PDAC susceptibility. We performed a systematic review of PubMed publications reporting germline variants identified in these genes in PDAC patients. Overall, the retrieved articles included 1493 PDAC patients. A high proportion of these patients (n = 1225/1493, 82%) were found to harbor alterations in genes (ATM, BRCA1, BRCA2, PALB2) involved in the homologous recombination repair (HRR) pathway. Specifically, the remaining PDAC patients were reported to carry alterations in genes playing a role in other cancer pathways (CDKN2A, STK11, TP53; n = 181/1493, 12.1%) or in the mismatch repair (MMR) pathway (MLH1, MSH2, MSH6, PMS2; n = 87/1493, 5.8%). Our findings highlight the importance of germline genetic characterization in PDAC patients for better personalized targeted therapies, clinical management, and surveillance.

17.
Cancers (Basel) ; 14(19)2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36230763

RESUMO

c-MYC is one of the most important factors involved in colorectal cancer (CRC) initiation and progression; indeed, it is found to be upregulated in up to 80% of sporadic cases. During colorectal carcinogenesis, c-MYC is maintained upregulated through ß-catenin-mediated transcriptional activation and ERK-mediated post-translational stabilization. Our data demonstrate that p38α, a kinase involved in CRC metabolism and survival, contributes to c-Myc protein stability. Moreover, we show that p38α, like ERK, stabilizes c-MYC protein levels by preventing its ubiquitination. Of note, we found that p38α phosphorylates c-MYC and interacts with it both in vitro and in cellulo. Extensive molecular analyses in the cellular and in vivo models revealed that the p38α kinase inhibitors, SB202190 and ralimetinib, affect c-MYC protein levels. Ralimetinib also exhibited a synthetic lethality effect when used in combination with the MEK1 inhibitor trametinib. Overall, our findings identify p38α as a promising therapeutic target, acting directly on c-MYC, with potential implications for countering c-MYC-mediated CRC proliferation, metastatic dissemination, and chemoresistance.

18.
Genes (Basel) ; 13(4)2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35456450

RESUMO

Genetic variants located in non-coding regions can affect processes that regulate protein expression, functionally contributing to human disease. Germline heterozygous mutations in the non-coding region of the PTEN gene have been previously identified in patients with PTEN hamartoma tumor syndrome (PHTS) diagnosed with breast, thyroid, and/or endometrial cancer. In this study, we report a PTEN promoter variant (rs34149102 A allele) that was identified by direct sequencing in an Italian family with a history of gastroesophageal junction (GEJ) adenocarcinoma and breast cancer. In order to investigate the putative functional role of the rs34149102 A allele variant, we evaluated the status of PTEN alterations at the somatic level. We found that PTEN protein expression was absent in the GEJ adenocarcinoma tissue of the index case. Moreover, we detected the occurrence of copy number loss involving the PTEN rs34149102 major C allele in tumor tissue, revealing that the second allele was somatically inactivated. This variant is located within an active regulatory region of the PTEN core promoter, and in silico analysis suggests that it may affect the binding of the nuclear transcription factor MAZ and hence PTEN expression. Overall, these results reveal the functional role of the PTEN promoter rs34149102 A allele variant in the modulation of PTEN protein expression and highlight its contribution to hereditary cancer risk.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Síndrome do Hamartoma Múltiplo , Neoplasias da Mama/genética , Neoplasias Esofágicas , Feminino , Células Germinativas/metabolismo , Síndrome do Hamartoma Múltiplo/genética , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
19.
Nutrients ; 14(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35565740

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, and its prevalence worldwide is increasing. Several studies support the pathophysiological role of the gut-liver axis, where specific signal pathways are finely tuned by intestinal microbiota both in the onset and progression of NAFLD. In the present study, we investigate the impact of different lifestyle interventions on the gut microbiota composition in 109 NAFLD patients randomly allocated to six lifestyle intervention groups: Low Glycemic Index Mediterranean Diet (LGIMD), aerobic activity program (ATFIS_1), combined activity program (ATFIS_2), LGIMD plus ATFIS_1 or ATFIS2 and Control Diet based on CREA-AN (INRAN). The relative abundances of microbial taxa at all taxonomic levels were explored in all the intervention groups and used to cluster samples based on a statistical approach, relying both on the discriminant analysis of principal components (DAPCs) and on a linear regression model. Our analyses reveal important differences when physical activity and the Mediterranean diet are merged as treatment and allow us to identify the most statistically significant taxa linked with liver protection. These findings agree with the decreased 'controlled attenuation parameter' (CAP) detected in the LGIMD-ATFIS_1 group, measured using FibroScan®. In conclusion, our study demonstrates the synergistic effect of lifestyle interventions (diet and/or physical activity programs) on the gut microbiota composition in NAFLD patients.


Assuntos
Dieta Mediterrânea , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Exercício Físico , Índice Glicêmico , Humanos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
20.
J Hum Genet ; 56(7): 508-15, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21593744

RESUMO

MECP2 mutations are responsible for two different phenotypes in females, classical Rett syndrome and the milder Zappella variant (Z-RTT). We investigated whether copy number variants (CNVs) may modulate the phenotype by comparison of array-CGH data from two discordant pairs of sisters and four additional discordant pairs of unrelated girls matched by mutation type. We also searched for potential MeCP2 targets within CNVs by chromatin immunopreceipitation microarray (ChIP-chip) analysis. We did not identify one major common gene/region, suggesting that modifiers may be complex and variable between cases. However, we detected CNVs correlating with disease severity that contain candidate modifiers. CROCC (1p36.13) is a potential MeCP2 target, in which a duplication in a Z-RTT and a deletion in a classic patient were observed. CROCC encodes a structural component of ciliary motility that is required for correct brain development. CFHR1 and CFHR3, on 1q31.3, may be involved in the regulation of complement during synapse elimination, and were found to be deleted in a Z-RTT but duplicated in two classic patients. The duplication of 10q11.22, present in two Z-RTT patients, includes GPRIN2, a regulator of neurite outgrowth and PPYR1, involved in energy homeostasis. Functional analyses are necessary to confirm candidates and to define targets for future therapies.


Assuntos
Variações do Número de Cópias de DNA , Síndrome de Rett/genética , Proteínas Sanguíneas/genética , Imunoprecipitação da Cromatina , Cromossomos Humanos Par 1/genética , Proteínas Inativadoras do Complemento C3b/genética , Proteínas do Citoesqueleto/genética , Feminino , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA