Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Genomics ; 17: 130, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26912237

RESUMO

BACKGROUND: Delayed or secondary cell death that is caused by a cascade of cellular and molecular processes initiated by traumatic brain injury (TBI) may be reduced or prevented if an effective neuroprotective strategy is employed. Microarray and subsequent bioinformatic analyses were used to determine which genes, pathways and networks were significantly altered 24 h after unilateral TBI in the rat. Ipsilateral hemi-brain, the corresponding contralateral hemi-brain, and naïve (control) brain tissue were used for microarray analysis. RESULTS: Ingenuity Pathway Analysis showed cell death and survival (CD) to be a top molecular and cellular function associated with TBI on both sides of the brain. One major finding was that the overall gene expression pattern suggested an increase in CD genes in ipsilateral brain tissue and suppression of CD genes contralateral to the injury which may indicate an endogenous protective mechanism. We created networks of genes of interest (GOI) and ranked the genes by the number of direct connections each had in the GOI networks, creating gene interaction hierarchies (GIHs). Cell cycle was determined from the resultant GIHs to be a significant molecular and cellular function in post-TBI CD gene response. CONCLUSIONS: Cell cycle and apoptosis signalling genes that were highly ranked in the GIHs and exhibited either the inverse ipsilateral/contralateral expression pattern or contralateral suppression were identified and included STAT3, CCND1, CCND2, and BAX. Additional exploration into the remote suppression of CD genes may provide insight into neuroprotective mechanisms that could be used to develop therapies to prevent cell death following TBI.


Assuntos
Lesões Encefálicas/genética , Ciclo Celular/genética , Morte Celular/genética , Epistasia Genética , Redes Reguladoras de Genes , Animais , Apoptose , Encéfalo/fisiopatologia , Ciclina D1/genética , Ciclina D2/genética , Masculino , Análise em Microsséries , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/genética , Proteína X Associada a bcl-2/genética
2.
J Neuroinflammation ; 12: 64, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25880399

RESUMO

BACKGROUND: Neuregulin-1 (NRG-1) has been shown to act as a neuroprotectant in animal models of nerve agent intoxication and other acute brain injuries. We recently demonstrated that NRG-1 blocked delayed neuronal death in rats intoxicated with the organophosphate (OP) neurotoxin diisopropylflurophosphate (DFP). It has been proposed that inflammatory mediators are involved in the pathogenesis of OP neurotoxin-mediated brain damage. METHODS: We examined the influence of NRG-1 on inflammatory responses in the rat brain following DFP intoxication. Microglial activation was determined by immunohistchemistry using anti-CD11b and anti-ED1 antibodies. Gene expression profiling was performed with brain tissues using Affymetrix gene arrays and analyzed using the Ingenuity Pathway Analysis software. Cytokine mRNA levels following DFP and NRG-1 treatment was validated by real-time reverse transcription polymerase chain reaction (RT-PCR). RESULTS: DFP administration resulted in microglial activation in multiple brain regions, and this response was suppressed by treatment with NRG-1. Using microarray gene expression profiling, we observed that DFP increased mRNA levels of approximately 1,300 genes in the hippocampus 24 h after administration. NRG-1 treatment suppressed by 50% or more a small fraction of DFP-induced genes, which were primarily associated with inflammatory responses. Real-time RT-PCR confirmed that the mRNAs for pro-inflammatory cytokines interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) were significantly increased following DFP exposure and that NRG-1 significantly attenuated this transcriptional response. In contrast, tumor necrosis factor α (TNFα) transcript levels were unchanged in both DFP and DFP + NRG-1 treated brains relative to controls. CONCLUSION: Neuroprotection by NRG-1 against OP neurotoxicity is associated with the suppression of pro-inflammatory responses in brain microglia. These findings provide new insight regarding the molecular mechanisms involved in the neuroprotective role of NRG-1 in acute brain injuries.


Assuntos
Inibidores da Colinesterase/toxicidade , Inibidores da Colinesterase/uso terapêutico , Encefalite/induzido quimicamente , Isoflurofato/toxicidade , Neuregulina-1/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Encéfalo/patologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intra-Arteriais , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro , Ratos , Ratos Sprague-Dawley
3.
J Mol Neurosci ; 69(2): 333-342, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31290093

RESUMO

Identifying novel neuroprotectants that can halt or reverse the neurological effects of stroke is of interest to both clinicians and scientists. We and others previously showed the pre-clinical neuroprotective efficacy of neuregulin-1 (NRG-1) in rats following focal brain ischemia. In this study, we examined neuroprotection by exogenous and endogenous NRG-1 using a mouse model of ischemic stroke. C57BL6 mice were subjected to middle cerebral artery occlusion (MCAO) followed by reperfusion. NRG-1 or vehicle was infused intra-arterially (i.a.) or intravenously (i.v.) after MCAO and before the onset of reperfusion. NRG-1 treatment (16 µg/kg; i.a.) reduced cerebral cortical infarct volume by 72% in mice when delivered post-ischemia. NRG-1 also inhibited neuronal injury as measured by Fluoro Jade B labeling and rescued NeuN immunoreactivity in neurons. Neuroprotection by NRG-1 was also observed in mice when administered i.v. (100 µg/kg) in both male and female mice. We investigated whether endogenous NRG-1 was neuroprotective using male and female heterozygous NRG-1 knockout mice (NRG-1+/-) compared with wild-type mice (WT) littermates. NRG-1+/- and WT mice were subjected to MCAO for 45 min, and infarct size was measured 24 h following MCAO. NRG-1+/- mice displayed a sixfold increase in cortical infarct size compared with WT mice. These results demonstrate that NRG-1 treatment mitigates neuronal damage following cerebral ischemia. We further showed that reduced endogenous NRG-1 results in exacerbated neuronal injury in vivo. These findings suggest that NRG-1 represents a promising therapy to treat stroke in human patients.


Assuntos
Infarto da Artéria Cerebral Média/tratamento farmacológico , Neuregulina-1/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Feminino , Heterozigoto , Infarto da Artéria Cerebral Média/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuregulina-1/genética
4.
PLoS One ; 13(6): e0197092, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856744

RESUMO

Ischemic stroke is a major cause of mortality in the United States. We previously showed that neuregulin-1 (NRG1) was neuroprotective in rat models of ischemic stroke. We used gene expression profiling to understand the early cellular and molecular mechanisms of NRG1's effects after the induction of ischemia. Ischemic stroke was induced by middle cerebral artery occlusion (MCAO). Rats were allocated to 3 groups: (1) control, (2) MCAO and (3) MCAO + NRG1. Cortical brain tissues were collected three hours following MCAO and NRG1 treatment and subjected to microarray analysis. Data and statistical analyses were performed using R/Bioconductor platform alongside Genesis, Ingenuity Pathway Analysis and Enrichr software packages. There were 2693 genes differentially regulated following ischemia and NRG1 treatment. These genes were organized by expression patterns into clusters using a K-means clustering algorithm. We further analyzed genes in clusters where ischemia altered gene expression, which was reversed by NRG1 (clusters 4 and 10). NRG1, IRS1, OPA3, and POU6F1 were central linking (node) genes in cluster 4. Conserved Transcription Factor Binding Site Finder (CONFAC) identified ETS-1 as a potential transcriptional regulator of NRG1 suppressed genes following ischemia. A transcription factor activity array showed that ETS-1 activity was increased 2-fold, 3 hours following ischemia and this activity was attenuated by NRG1. These findings reveal key early transcriptional mechanisms associated with neuroprotection by NRG1 in the ischemic penumbra.


Assuntos
Isquemia Encefálica/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Neuregulina-1/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Elementos de Resposta , Acidente Vascular Cerebral/metabolismo , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Masculino , Neuregulina-1/genética , Proteína Proto-Oncogênica c-ets-1/genética , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia
5.
Brain Res ; 1698: 161-169, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30099039

RESUMO

The use of blood biomarkers for stroke has been long considered an excellent method to determine the occurrence, timing, subtype, and severity of stroke. In this study, venous blood was obtained from ischemic stroke patients after stroke onset and compared with age and sex-matched controls. We used a multiplex panel of 37 inflammatory molecules, analyzed using Luminex MagPix technology, to identify the changes in plasma proteins after ischemic stroke. We identified eight key molecules that were altered within the blood of stroke patients as compared to controls. Plasma levels of interleukin 6 signal transducer (sIL-6Rß/gp130), matrix metalloproteinase-2 (MMP-2), osteopontin, sTNF-R1 and sTNF-R2 were significantly higher in stroke patients compared to controls. Interferon-ß, interleukin-28, and thymic stromal lymphopoietin (TSLP) were decreased in plasma from stroke patients. No other immunological markers were significantly different between patient groups. When stroke patients were treated with tissue plasminogen activator (t-PA), plasma levels of interferon-α2 significantly increased while interleukin-2 and pentraxin-3 decreased. The discriminatory power of the molecules was evaluated by receiver operating characteristic (ROC) analysis. According to ROC analysis, the best markers for distinguishing stroke occurrence were MMP-2 (AUC = 0.76, sensitivity 62.5%, specificity 88.5%), sTNF-R2 (AUC = 0.75, sensitivity 83.3%, specificity 65.3%) and TSLP (AUC = 0.81, sensitivity 66.7%, specificity 96.2%). Multivariate logistic regression, used to evaluate the combination of proteins, identified a biomarker panel with high specificity and sensitivity (AUC = 0.96, sensitivity 87.5%, specificity 96.2%). These results indicate a novel set of blood biomarkers that could be used in a panel to identify stroke patients and their responsiveness to therapeutic intervention.


Assuntos
Proteínas Sanguíneas/metabolismo , Acidente Vascular Cerebral/sangue , Idoso , Biomarcadores/sangue , Biomarcadores Farmacológicos/sangue , Isquemia Encefálica/sangue , Receptor gp130 de Citocina/sangue , Feminino , Humanos , Masculino , Metaloproteinase 2 da Matriz/sangue , Pessoa de Meia-Idade , Osteopontina/sangue , Curva ROC , Fatores de Risco , Acidente Vascular Cerebral/tratamento farmacológico , Fator 1 Associado a Receptor de TNF/sangue , Fator 2 Associado a Receptor de TNF/sangue , Ativador de Plasminogênio Tecidual/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA