Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 610(7931): 296-301, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224420

RESUMO

The water-splitting reaction using photocatalyst particles is a promising route for solar fuel production1-4. Photo-induced charge transfer from a photocatalyst to catalytic surface sites is key in ensuring photocatalytic efficiency5; however, it is challenging to understand this process, which spans a wide spatiotemporal range from nanometres to micrometres and from femtoseconds to seconds6-8. Although the steady-state charge distribution on single photocatalyst particles has been mapped by microscopic techniques9-11, and the charge transfer dynamics in photocatalyst aggregations have been revealed by time-resolved spectroscopy12,13, spatiotemporally evolving charge transfer processes in single photocatalyst particles cannot be tracked, and their exact mechanism is unknown. Here we perform spatiotemporally resolved surface photovoltage measurements on cuprous oxide photocatalyst particles to map holistic charge transfer processes on the femtosecond to second timescale at the single-particle level. We find that photogenerated electrons are transferred to the catalytic surface quasi-ballistically through inter-facet hot electron transfer on a subpicosecond timescale, whereas photogenerated holes are transferred to a spatially separated surface and stabilized through selective trapping on a microsecond timescale. We demonstrate that these ultrafast-hot-electron-transfer and anisotropic-trapping regimes, which challenge the classical perception of a drift-diffusion model, contribute to the efficient charge separation in photocatalysis and improve photocatalytic performance. We anticipate that our findings will be used to illustrate the universality of other photoelectronic devices and facilitate the rational design of photocatalysts.

2.
J Am Chem Soc ; 146(33): 23437-23448, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39115182

RESUMO

Understanding the sub-band gap luminescence in Ruddlesden-Popper 2D metal halide hybrid perovskites (2D HaPs) is essential for efficient charge injection and collection in optoelectronic devices. Still, its origins are still under debate with respect to the role of self-trapped excitons or radiative recombination via defect states. In this study, we characterized charge separation, recombination, and transport in single crystals, exfoliated layers, and polycrystalline thin films of butylammonium lead iodide (BA2PbI4), one of the most prominent 2D HaPs. We combined complementary defect- and exciton-sensitive methods such as photoluminescence (PL) spectroscopy, modulated and time-resolved surface photovoltage (SPV) spectroscopy, constant final state photoelectron yield spectroscopy (CFSYS), and constant light-induced magneto transport (CLIMAT), to demonstrate striking differences between charge separation induced by dissociation of excitons and by excitation of mobile charge carriers from defect states. Our results suggest that the broad sub-band gap emission in BA2PbI4 and other 2D HaPs is caused by radiative recombination via defect states (shallow as well as midgap states) rather than self-trapped excitons. Density functional theory (DFT) results show that common defects can readily occur and produce an energetic profile that agrees well with the experimental results. The DFT results suggest that the formation of iodine interstitials is the initial process leading to degradation, responsible for the emergence of midgap states, and that defect engineering will play a key role in enhancing the optoelectronic properties of 2D HaPs in the future.

3.
Nano Lett ; 19(1): 426-432, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30585727

RESUMO

Defects can markedly impact the performance of semiconductor-based photocatalysts, where the spatial separation of photogenerated charges is required for converting solar energy into fuels. However, understanding exactly how defects affect photogenerated charge separation at nanometer scale remains quite challenging. Here, using time- and space-resolved surface photovoltage approaches, we demonstrate that the distribution of surface photogenerated charges and the direction of photogenerated charge separation are determined by the defects distributed within a 100 nm surface region of a photocatalytic Cu2O particle. This is enabled by the defect-induced charge separation process, arising from the trapping of electrons at the near-surface defect states and the accumulation of holes at the surface states. More importantly, the driving force for defect-induced charge separation is greater than 4.2 kV/cm and can be used to drive photocatalytic reactions. These findings highlight the importance of near-surface defect engineering in promoting photogenerated charge separation and manipulating surface photogenerated charges; further, they open up a powerful avenue for improving photocatalytic charge separation and solar energy conversion efficiency.

4.
Entropy (Basel) ; 22(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-33286814

RESUMO

We construct a microscopic model to study discrete randomness in bistable systems coupled to an environment comprising many degrees of freedom. A quartic double well is bilinearly coupled to a finite number N of harmonic oscillators. Solving the time-reversal invariant Hamiltonian equations of motion numerically, we show that for N=1, the system exhibits a transition with increasing coupling strength from integrable to chaotic motion, following the Kolmogorov-Arnol'd-Moser (KAM) scenario. Raising N to values of the order of 10 and higher, the dynamics crosses over to a quasi-relaxation, approaching either one of the stable equilibria at the two minima of the potential. We corroborate the irreversibility of this relaxation on other characteristic timescales of the system by recording the time dependences of autocorrelation, partial entropy, and the frequency of jumps between the wells as functions of N and other parameters. Preparing the central system in the unstable equilibrium at the top of the barrier and the bath in a random initial state drawn from a Gaussian distribution, symmetric under spatial reflection, we demonstrate that the decision whether to relax into the left or the right well is determined reproducibly by residual asymmetries in the initial positions and momenta of the bath oscillators. This result reconciles the randomness and spontaneous symmetry breaking of the asymptotic state with the conservation of entropy under canonical transformations and the manifest symmetry of potential and initial condition of the bistable system.

5.
Chem Soc Rev ; 47(22): 8238-8262, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30059114

RESUMO

Understanding photogenerated charge separation on the nano- to micrometer scale is the key to optimizing the photocatalytic solar energy conversion efficiency. In the past few years, spatially resolved surface photovoltage (SPV) techniques have opened up new opportunities to directly image localized charge separation at surfaces or interfaces of photocatalysts and thus provided deep insights into the understanding of photocatalysis. In this review, we reviewed the SPV techniques, in particular Kelvin probe force microscopy (KPFM) based spatially resolved SPV techniques and their applications in charge separation imaging. The SPV principle was explained with regard to charge separation across a space charge region (SCR) in a depletion layer at a semiconductor surface and to diffusion. The center of charge approach, relaxation of SPV signals and measurement of SPV signals including SPV transients with fixed capacitors were described. Then, we highlighted the fundamental principle and development of the spatially resolved SPV technique and its application in photocatalysis. Important progress made by the spatially resolved SPV technique in this group is given, focusing on understanding the nature of charge separation and providing insights into the rational design of highly efficient photocatalytic systems. Finally, we discuss the prospects of further developments of the spatially resolved SPV technique that would help in understanding photocatalysis for solar energy conversion with high temporal resolution and operated under in operando conditions.

6.
Entropy (Basel) ; 21(3)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33267001

RESUMO

Quantum chaos is presented as a paradigm of information processing by dynamical systems at the bottom of the range of phase-space scales. Starting with a brief review of classical chaos as entropy flow from micro- to macro-scales, I argue that quantum chaos came as an indispensable rectification, removing inconsistencies related to entropy in classical chaos: bottom-up information currents require an inexhaustible entropy production and a diverging information density in phase-space, reminiscent of Gibbs' paradox in statistical mechanics. It is shown how a mere discretization of the state space of classical models already entails phenomena similar to hallmarks of quantum chaos and how the unitary time evolution in a closed system directly implies the "quantum death" of classical chaos. As complementary evidence, I discuss quantum chaos under continuous measurement. Here, the two-way exchange of information with a macroscopic apparatus opens an inexhaustible source of entropy and lifts the limitations implied by unitary quantum dynamics in closed systems. The infiltration of fresh entropy restores permanent chaotic dynamics in observed quantum systems. Could other instances of stochasticity in quantum mechanics be interpreted in a similar guise? Where observed quantum systems generate randomness, could it result from an exchange of entropy with the macroscopic meter? This possibility is explored, presenting a model for spin measurement in a unitary setting and some preliminary analytical results based on it.

7.
Nano Lett ; 17(11): 6735-6741, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28967261

RESUMO

The cocatalysts or dual cocatalysts of photocatalysts are indispensable for high efficiency in artificial photosynthesis for solar fuel production. However, the reaction activity increased by cocatalysts cannot be directly ascribed to the accelerated catalytic kinetics, since photogenerated charges are involved in the elementary steps of photocatalytic reactions. To date, diverging views about cocatalysts show that their exact role for photocatalysis is not well understood yet. Herein, we image directly the local separation of photogenerated charge carriers across single crystals of the BiVO4 photocatalyst which loaded locally with nanoparticles of a MnOx single cocatalyst or with nanoparticles of a spatially separated MnOx and Pt dual cocatalyst. The deposition of the single cocatalyst resulted not only in a strong increase of the interfacial charge transfer but also, surprisingly, in a change of the direction of built-in electric fields beneath the uncovered surface of the photocatalyst. The additive electric fields caused a strong increase of local surface photovoltage signals (up to 80 times) and correlated with the increase of the photocatalytic performance. The local electric fields were further increased (up to 2.5 kV·cm-1) by a synergetic effect of the spatially separated dual cocatalysts. The results reveal that cocatalyst has a conclusive effect on charge separation in photocatalyst particle by aligning the vectors of built-in electric fields in the photocatalyst particle. This effect is beyond its catalytic function in thermal catalysis.

9.
Small ; 10(6): 1194-201, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24395590

RESUMO

Pyrite nanocrystals are currently considered as a promising material for large scale photovoltaic applications due to their non-toxicity and large abundance. While scalable synthetic routes for phase-pure and shape controlled colloidal pyrite nanocrystals have been reported, their use in solar cells has been hampered by the detrimental effects of their surface defects. Here, we report a systematic study of optical and electronic properties of pyrite nanocrystal thin films employing a series of different ligands varying both the anchor and bridging group. The effect of the ligands on the optical and electronic properties is investigated by UV-vis/NIR absorption spectroscopy, current voltage characteristic measurements and surface photovoltage spectroscopy. We find that the optical absorption is mainly determined by the anchor group. The absorption onset in the thin films shifts up to ∼100 meV to the red. This is attributed to changes in the dielectric environment induced by different anchors. The conductivity and photoconductivity, on the other hand, are determined by combined effects of anchor and bridging group, which modify the effective hopping barrier. Employing different ligands, the differential conductance varies over four orders of magnitude. The largest redshift and differential conductance are observed for ammonium sulfides and thiolated aromatic linkers. Pyridine and long chain amines, on the other hand, lead to smaller modifications. Our findings highlight the importance of surface functionalization and interparticle electronic coupling in the use of pyrite nanocrystals for photovoltaic devices.

10.
Phys Chem Chem Phys ; 16(9): 4082-91, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24448680

RESUMO

Many recent advances in novel solar cell technologies are based on charge separation in disordered semiconductor heterojunctions. In this work we use the Random Walk Numerical Simulation (RWNS) method to model the dynamics of electrons and holes in two disordered semiconductors in contact. Miller-Abrahams hopping rates and a tunnelling distance-dependent electron-hole annihilation mechanism are used to model transport and recombination, respectively. To test the validity of the model, three numerical "experiments" have been devised: (1) in the absence of constant illumination, charge separation has been quantified by computing surface photovoltage (SPV) transients. (2) By applying a continuous generation of electron-hole pairs, the model can be used to simulate a solar cell under steady-state conditions. This has been exploited to calculate open-circuit voltages and recombination currents for an archetypical bulk heterojunction solar cell (BHJ). (3) The calculations have been extended to nanostructured solar cells with inorganic sensitizers to study, specifically, non-ideality in the recombination rate. The RWNS model in combination with exponential disorder and an activated tunnelling mechanism for transport and recombination is shown to reproduce correctly charge separation parameters in these three "experiments". This provides a theoretical basis to study relevant features of novel solar cell technologies.

11.
Phys Chem Chem Phys ; 15(5): 1389-98, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23247669

RESUMO

α-Fe(2)O(3) (hematite) photoanodes for the oxygen evolution reaction (OER) were prepared by a cost-efficient sol-gel procedure. Due to low active photoelectrochemical properties observed, it is assumed that the sol-gel procedure leads to hematite films with defects and surface states on which generated charge carriers are recombined or immobilized in trap processes. Electrochemical activation was proven to diminish unfavourable surface groups to some extent. More efficiently, a plasma treatment improves significantly the photoelectrochemical properties of the OER. X-ray photoelectron spectroscopy (XPS) analysis reveals an oxygen enriched surface layer with new oxygen species which may be responsible for the improved electrochemical activity. Due to surface photovoltage an increased fraction of transferred charge carriers from these newly produced surface defects are identified.


Assuntos
Compostos Férricos/química , Géis/química , Luz , Água/química , Técnicas Eletroquímicas , Oxirredução , Oxigênio/química
12.
Phys Chem Chem Phys ; 15(33): 13835-43, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23677043

RESUMO

Here we report the preparation of high performance Quantum Dot Sensitized Solar Cells (QDSCs) based on PbS-CdS co-sensitized nanoporous TiO2 electrodes. QDs were directly grown on the TiO2 mesostructure by the Successive Ionic Layer Absorption and Reaction (SILAR) technique. This method is characterized by a fast deposition rate which involves random crystal growth and poor control of the defect states and lattice mismatch in the QDs limiting the quality of the electrodes for photovoltaic applications. In this work we demonstrate that the nature of the metallic precursor selected for SILAR has an active role in both the QD's deposition rate and the defect's distribution in the material, with important consequences for the final photovoltaic performance of the device. For this purpose, acetate and nitrate salts were selected as metallic precursors for the SILAR deposition and films with similar absorption properties and consequently with similar density of photogenerated carriers were studied. Under these conditions, ultrafast carrier dynamics and surface photovoltage spectroscopy reveal that the use of acetate precursors leads to higher injection efficiency and lower internal recombination due to contribution from defect states. This was corroborated in a complete cell configuration with films sensitized with acetate precursors, achieving unprecedented photocurrents of ~22 mA cm(-2) and high power conversion efficiency exceeding 4%, under full 1 sun illumination.

13.
iScience ; 26(4): 106365, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37009218

RESUMO

Halide perovskite-based photon upconverters utilize perovskite thin films to sensitize triplet exciton formation in a small-molecule layer, driving triplet-triplet annihilation upconversion. Despite having excellent carrier mobility, these systems suffer from inefficient triplet formation at the perovskite/annihilator interface. We studied triplet formation in formamidinium-methylammonium lead iodide/rubrene bilayers using photoluminescence and surface photovoltage methods. By studying systems constructed on glass as well as hole-selective substrates, comprising self-assembled layers of the carbazole derivative 2PACz ([2-(9H-carbazol-9-yl)ethyl]phosphonic acid) on indium-doped tin oxide, we saw how changes in the carrier dynamics induced by the hole-selective substrate perturbed triplet formation at the perovskite/rubrene interface. We propose that an internal electric field, caused by hole transfer at the perovskite/rubrene interface, strongly affects triplet exciton formation, accelerating exciton-forming electron-hole encounters at the interface but also limiting the hole density in rubrene at high excitation densities. Controlling this field is a promising path to improving triplet formation in perovskite/annihilator upconverters.

14.
Small Methods ; 7(11): e2300423, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37596059

RESUMO

Solvated electrons are highly reductive chemical species whose chemical properties remain largely unknown. Diamond materials are proposed as a promising emitter of solvated electrons and visible light excitation would enable solar-driven CO2 or N2 reductions reactions in aqueous medium. But sub-bandgap excitation remains challenging. In this work, the role of surface states on diamond materials for charge separation and emission in both gaseous and aqueous environments from deep UV to visible light excitation is elucidated. Four different X-ray and UV-vis spectroscopy methods are applied to diamond materials with different surface termination, doping and crystallinity. Surface states are found to dominate sub-bandgap charge transfer. However, the surface charge separation is drastically reduced for boron-doped diamond due to a very high density of bulk defects. In a gaseous atmosphere, the oxidized diamond surface maintains a negative electron affinity, allowing charge emission, due to remaining hydrogenated and hydroxylated groups. In an aqueous electrolyte, a photocurrent for illumination down to 3.5 eV is observed for boron-doped nanostructured diamond, independent of the surface termination. This study opens new perspectives on photo-induced interfacial charge transfer processes from metal-free semiconductors such as diamonds.

15.
ACS Appl Mater Interfaces ; 14(38): 43163-43170, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36100206

RESUMO

For the efficient photocatalytic oxidation of organic pollutants at surfaces of semiconductors, photogenerated holes shall be separated toward the surface and transferred to reactive surface sites, whereas the transfer of photogenerated electrons toward the surface shall be minimized. In this Research Article, the identification of suitable synthesis control of charge separation combined with an in-depth understanding of charge kinetics and trapping passivation mechanisms at the related surfaces can provide tremendous opportunities for boosting the photocatalytic performance. In this work, a comprehensive transient surface photovoltage spectroscopy study of charge separation at anatase TiO2 thin films, synthesized by ultrasonic spray pyrolysis from titanium(IV) isopropoxide (TTIP)-acetylacetone (AcacH) based precursor is reported. By varying the amount of AcacH in the precursor solution, an experimental approach of synthesis control of the charge transfer toward TiO2 surface is provided for the first time. An increased amount of AcacH in the precursor promotes transition from preferential fast electron to preferential fast hole transfer toward anatase surface, correlating with a strong increase of the photocatalytic decomposition rate of organic pollutants. Suitable mechanisms of AcacH-induced passivation of electron traps at TiO2 surfaces are analyzed, providing a new degree of freedom for tailoring the properties of photocatalytic systems.

16.
J Am Chem Soc ; 132(17): 5981-3, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20384327

RESUMO

Charge separation and diffusion in type II multilayered structures of CdTe and CdSe nanocrystals with a polymer spacer are unambiguously proven by surface photovoltage spectroscopy. Holes accumulate in CdTe nanocrystal layers, and the electrons in CdSe nanocrystal layers. An increase of thickness of the polymer spacer strongly decreases the charge separation efficiency. Surface photovoltage transients demonstrate diffusion of the separated charges over several layers of the same kind of nanocrystals.

17.
ACS Appl Mater Interfaces ; 12(2): 3140-3149, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31829545

RESUMO

Electronic properties and charge transfer processes were studied in an n-Si(n++)/TiO2(ALD) system at an amorphous TiO2/anatase transition by transient surface photovoltage spectroscopy at constant photon flux. The TiO2 layers were deposited by atomic layer deposition (ALD) onto highly doped silicon (c-Si(n++)), and the phase composition of the TiO2 layers changed with increasing thickness from amorphous to the anatase polymorph as anatase crystallites started to grow at the surface. Depending on phase composition, the band gap of TiO2 correlated with the characteristic energy of exponential tails. In most cases, photogenerated electrons were separated toward the back contact. For photogeneration in c-Si(n++), electron back transfer was limited by Auger recombination with holes in the surface space charge region of c-Si(n++), and by electron transfer across the interface, either via exponentially distributed states near the conduction band edge of amorphous TiO2 or via distance-dependent recombination with holes trapped in anatase. For photogeneration in TiO2, electron back transfer was limited by trapping in TiO2. Under strong light absorption in amorphous TiO2 with anatase crystallites on top, electrons were preferentially separated toward the TiO2 surface.

18.
Chem Sci ; 11(41): 11195-11204, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34094360

RESUMO

p-Type CuBi2O4 is considered a promising metal oxide semiconductor for large-scale, economic solar water splitting due to the optimal band structure and low-cost fabrication. The main challenge in utilizing CuBi2O4 as a photoelectrode for water splitting, is that it must be protected from photo-corrosion in aqueous solutions, an inherent problem for Cu-based metal oxide photoelectrodes. In this work, several buffer layers (CdS, BiVO4, and Ga2O3) were tested between CuBi2O4 and conformal TiO2 as the protection layer. RuO x was used as the co-catalyst for hydrogen evolution. Factors that limit the photoelectrochemical performance of the CuBi2O4/TiO2/RuO x , CuBi2O4/CdS/TiO2/RuO x , CuBi2O4/BiVO4/TiO2/RuO x and CuBi2O4/Ga2O3/TiO2/RuO x heterojunction photoelectrodes were revealed by comparing photocurrents, band offsets, and directed charge transfer measured by modulated surface photovoltage spectroscopy. For CuBi2O4/Ga2O3/TiO2/RuO x photoelectrodes, barriers for charge transfer strongly limited the performance. In CuBi2O4/CdS/TiO2/RuO x , the absence of hole traps resulted in a relatively high photocurrent density and faradaic efficiency for hydrogen evolution despite the presence of pronounced deep defect states at the CuBi2O4/CdS interface. Hole trapping limited the performance moderately in CuBi2O4/BiVO4/TiO2/RuO x and strongly in CuBi2O4/TiO2/RuO x photoelectrodes. For the first time, our results show that hole trapping is a key factor that must be addressed to optimize the performance of CuBi2O4-based heterojunction photoelectrodes.

19.
ACS Appl Mater Interfaces ; 12(12): 13959-13970, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32096970

RESUMO

We assess a tandem photoelectrochemical cell consisting of a W:BiVO4 photoanode top absorber and a CuBi2O4 photocathode bottom absorber for overall solar water splitting. We show that the W:BiVO4 photoanode oxidizes water and produces oxygen at potentials ≥0.7 V vs RHE when CoPi is added as a cocatalyst. However, the CuBi2O4 photocathode does not produce a detectable amount of hydrogen from water reduction even when Pt or RuOx is added as a cocatalyst because the photocurrent primarily goes toward photocorrosion of CuBi2O4 rather than proton reduction. Protecting the CuBi2O4 photocathode with a CdS/TiO2 heterojunction and adding RuOx as a cocatalyst prevents photocorrosion and allows for photoelectrochemical production of hydrogen at potentials ≤0.3 V vs RHE. A tandem photoelectrochemical cell composed of a W:BiVO4/CoPi photoanode and a CuBi2O4/CdS/TiO2/RuOx photocathode produces hydrogen which can be detected under illumination at an applied bias of ≥0.4 V. Since the valence band of BiVO4 and conduction band of CuBi2O4 are adequately positioned to oxidize water and reduce protons, we hypothesize that the applied bias is required to overcome the relatively low photovoltages of the photoelectrodes, that is, the relatively low quasi-Fermi level splitting within BiVO4 and CuBi2O4. This work is the first experimental demonstration of hydrogen production from a BiVO4-CuBi2O4-based tandem cell and it provides important insights into the significance of photovoltage in tandem devices for overall water splitting, especially for cells containing CuBi2O4 photocathodes.

20.
ACS Nano ; 14(2): 1445-1456, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31909973

RESUMO

Perovskite solar cells are among the most exciting photovoltaic systems as they combine low recombination losses, ease of fabrication, and high spectral tunability. The Achilles heel of this technology is the device stability due to the ionic nature of the perovskite crystal, rendering it highly hygroscopic, and the extensive diffusion of ions especially at increased temperatures. Herein, we demonstrate the application of a simple solution-processed perfluorinated self-assembled monolayer (p-SAM) that not only enhances the solar cell efficiency, but also improves the stability of the perovskite absorber and, in turn, the solar cell under increased temperature or humid conditions. The p-i-n-type perovskite devices employing these SAMs exhibited power conversion efficiencies surpassing 21%. Notably, the best performing devices are stable under standardized maximum power point operation at 85 °C in inert atmosphere (ISOS-L-2) for more than 250 h and exhibit superior humidity resilience, maintaining ∼95% device performance even if stored in humid air in ambient conditions over months (∼3000 h, ISOS-D-1). Our work, therefore, demonstrates a strategy towards efficient and stable perovskite solar cells with easily deposited functional interlayers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA