Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Liver Dis ; 44(1): 43-53, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38423068

RESUMO

Pediatric metabolic dysfunction-associated steatotic liver disease (MASLD) is common and can be seen as early as in utero. A growing body of literature suggests that gestational and early life exposures modify the risk of MASLD development in children. These include maternal risk factors, such as poor cardiometabolic health (e.g., obesity, gestational diabetes, rapid weight gain during pregnancy, and MASLD), as well as periconceptional dietary exposures, degree of physical activity, intestinal microbiome, and smoking. Paternal factors, such as diet and obesity, also appear to play a role. Beyond gestation, early life dietary exposures, as well as the rate of infant weight gain, may further modify the risk of future MASLD development. The mechanisms linking parental health and environmental exposures to pediatric MASLD are complex and not entirely understood. In conclusion, investigating gestational and developmental contributors to MASLD is critical and may identify future interventional targets for disease prevention.


Assuntos
Fígado Gorduroso , Obesidade , Lactente , Feminino , Gravidez , Criança , Humanos , Exposição Ambiental , Exercício Físico , Aumento de Peso
2.
PLoS Biol ; 19(9): e3001385, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495952

RESUMO

Intrauterine infection/inflammation (IUI) is a major contributor to preterm labor (PTL). However, IUI does not invariably cause PTL. We hypothesized that quantitative and qualitative differences in immune response exist in subjects with or without PTL. To define the triggers for PTL, we developed rhesus macaque models of IUI driven by lipopolysaccharide (LPS) or live Escherichia coli. PTL did not occur in LPS challenged rhesus macaques, while E. coli-infected animals frequently delivered preterm. Although LPS and live E. coli both caused immune cell infiltration, E. coli-infected animals showed higher levels of inflammatory mediators, particularly interleukin 6 (IL-6) and prostaglandins, in the chorioamnion-decidua and amniotic fluid (AF). Neutrophil infiltration in the chorio-decidua was a common feature to both LPS and E. coli. However, neutrophilic infiltration and IL6 and PTGS2 expression in the amnion was specifically induced by live E. coli. RNA sequencing (RNA-seq) analysis of fetal membranes revealed that specific pathways involved in augmentation of inflammation including type I interferon (IFN) response, chemotaxis, sumoylation, and iron homeostasis were up-regulated in the E. coli group compared to the LPS group. Our data suggest that the intensity of the host immune response to IUI may determine susceptibility to PTL.


Assuntos
Imunidade , Trabalho de Parto Prematuro/patologia , Complicações na Gravidez/imunologia , Animais , Modelos Animais de Doenças , Escherichia coli/patogenicidade , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/imunologia , Feminino , Inflamação , Lipopolissacarídeos/toxicidade , Macaca mulatta , Gravidez
3.
Int J Obes (Lond) ; 45(11): 2377-2387, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34302121

RESUMO

OBJECTIVE: The risks of excess sugar intake in addition to high-fat diet consumption on immunopathogenesis of obesity-associated metabolic diseases are poorly defined. Interleukin-4 (IL-4) and IL-13 signaling via IL-4Rα regulates adipose tissue lipolysis, insulin sensitivity, and liver fibrosis in obesity. However, the contribution of IL-4Rα to sugar rich diet-driven obesity and metabolic sequelae remains unknown. METHODS: WT, IL-4Rα-deficient (IL-4Rα-/-) and STAT6-deficient mice (STAT6-/-) male mice were fed low-fat chow, high fat (HF) or HF plus high carbohydrate (HC/fructose) diet (HF + HC). Analysis included quantification of: (i) body weight, adiposity, energy expenditure, fructose metabolism, fatty acid oxidation/synthesis, glucose dysmetabolism and hepatocellular damage; (ii) the contribution of the hematopoietic or non-hematopoietic IL-4Rα expression; and (iii) the relevance of IL-4Rα downstream canonical STAT6 signaling pathway in this setting. RESULTS: We show that IL-4Rα regulated HF + HC diet-driven weight gain, whole body adiposity, adipose tissue inflammatory gene expression, energy expenditure, locomotor activity, glucose metabolism, hepatic steatosis, hepatic inflammatory gene expression and hepatocellular damage. These effects were potentially, and in part, dependent on non-hematopoietic IL-4Rα expression but were independent of direct STAT6 activation. Mechanistically, hepatic ketohexokinase-A and C expression was dependent on IL-4Rα, as it was reduced in IL-4Rα-deficient mice. KHK activity was also affected by HF + HC dietary challenge. Further, reduced expression/activity of KHK in IL-4Rα mice had a significant effect on fatty acid oxidation and fatty acid synthesis pathways. CONCLUSION: Our findings highlight potential contribution of non-hematopoietic IL-4Rα activation of a non-canonical signaling pathway that regulates the HF + HC diet-driven induction of obesity and severity of obesity-associated sequelae.


Assuntos
Metabolismo Energético/fisiologia , Interleucina-4/metabolismo , Obesidade/metabolismo , Animais , Modelos Animais de Doenças , Frutose/efeitos adversos , Resistência à Insulina/fisiologia , Interleucina-4/análise , Camundongos , Obesidade/imunologia
4.
Crit Rev Clin Lab Sci ; 57(5): 308-322, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31935149

RESUMO

Excessive caloric intake in a form of high-fat diet (HFD) was long thought to be the major risk factor for development of obesity and its complications, such as fatty liver disease and insulin resistance. Recently, there has been a paradigm shift and more attention is attributed to the effects of sugar-sweetened beverages (SSBs) as one of the culprits of the obesity epidemic. In this review, we present the data invoking fructose intake with development of hepatic insulin resistance in human studies and discuss the pathways by which fructose impairs hepatic insulin action in experimental animal models. First, we described well-characterized pathways by which fructose metabolism indirectly leads to hepatic insulin resistance. These include unequivocal effects of fructose to promote de novo lipogenesis (DNL), impair fatty acid oxidation (FAO), induce endoplasmic reticulum (ER) stress and trigger hepatic inflammation. Additionally, we entertained the hypothesis that fructose can directly impede insulin signaling in the liver. This appears to be mediated by reduced insulin receptor and insulin receptor substrate 2 (IRS2) expression, increased protein-tyrosine phosphatase 1B (PTP1b) activity, whereas knockdown of ketohexokinase (KHK), the rate-limiting enzyme of fructose metabolism, increased insulin sensitivity. In summary, dietary fructose intake strongly promotes hepatic insulin resistance via complex interplay of several metabolic pathways, at least some of which are independent of increased weight gain and caloric intake. The current evidence shows that the fructose, but not glucose, component of dietary sugar drives metabolic complications and contradicts the notion that fructose is merely a source of palatable calories that leads to increased weight gain and insulin resistance.


Assuntos
Frutose/efeitos adversos , Frutose/metabolismo , Resistência à Insulina/fisiologia , Animais , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipogênese , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/epidemiologia , Obesidade/etiologia , Obesidade/metabolismo
5.
BMC Med ; 17(1): 135, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31311600

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver illness with a genetically heterogeneous background that can be accompanied by considerable morbidity and attendant health care costs. The pathogenesis and progression of NAFLD is complex with many unanswered questions. We conducted genome-wide association studies (GWASs) using both adult and pediatric participants from the Electronic Medical Records and Genomics (eMERGE) Network to identify novel genetic contributors to this condition. METHODS: First, a natural language processing (NLP) algorithm was developed, tested, and deployed at each site to identify 1106 NAFLD cases and 8571 controls and histological data from liver tissue in 235 available participants. These include 1242 pediatric participants (396 cases, 846 controls). The algorithm included billing codes, text queries, laboratory values, and medication records. Next, GWASs were performed on NAFLD cases and controls and case-only analyses using histologic scores and liver function tests adjusting for age, sex, site, ancestry, PC, and body mass index (BMI). RESULTS: Consistent with previous results, a robust association was detected for the PNPLA3 gene cluster in participants with European ancestry. At the PNPLA3-SAMM50 region, three SNPs, rs738409, rs738408, and rs3747207, showed strongest association (best SNP rs738409 p = 1.70 × 10- 20). This effect was consistent in both pediatric (p = 9.92 × 10- 6) and adult (p = 9.73 × 10- 15) cohorts. Additionally, this variant was also associated with disease severity and NAFLD Activity Score (NAS) (p = 3.94 × 10- 8, beta = 0.85). PheWAS analysis link this locus to a spectrum of liver diseases beyond NAFLD with a novel negative correlation with gout (p = 1.09 × 10- 4). We also identified novel loci for NAFLD disease severity, including one novel locus for NAS score near IL17RA (rs5748926, p = 3.80 × 10- 8), and another near ZFP90-CDH1 for fibrosis (rs698718, p = 2.74 × 10- 11). Post-GWAS and gene-based analyses identified more than 300 genes that were used for functional and pathway enrichment analyses. CONCLUSIONS: In summary, this study demonstrates clear confirmation of a previously described NAFLD risk locus and several novel associations. Further collaborative studies including an ethnically diverse population with well-characterized liver histologic features of NAFLD are needed to further validate the novel findings.


Assuntos
Hepatopatia Gordurosa não Alcoólica/genética , Adulto , Idoso , Índice de Massa Corporal , Estudos de Casos e Controles , Redes Comunitárias/organização & administração , Redes Comunitárias/estatística & dados numéricos , Progressão da Doença , Registros Eletrônicos de Saúde/organização & administração , Registros Eletrônicos de Saúde/estatística & dados numéricos , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica/organização & administração , Genômica/estatística & dados numéricos , Humanos , Lipase/genética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Morbidade , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Transdução de Sinais/genética
6.
Clin Exp Allergy ; 49(9): 1245-1257, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31265181

RESUMO

BACKGROUND: A close association between obesity and asthma has been described. The nature of this association remains elusive, especially with respect to allergic asthma. Controversial findings exist regarding the impact of short-term high-fat diet (HFD) feeding on the development of allergic asthma. OBJECTIVE: To delineate the impact of short-term HFD feeding on the development of experimental allergic asthma. METHODS: Female C57BL/6JRJ mice were fed with a short-term HFD or chow diet (CD) for 12 weeks. Allergic asthma was induced by intraperitoneal OVA/alum sensitization followed by repeated OVA airway challenges. We determined airway hyperresponsiveness (AHR) and pulmonary inflammation by histologic and flow cytometric analysis of immune cells. Furthermore, we assessed the impact of HFD on dendritic cell (DC)-mediated activation of T cells. RESULTS: Female mice showed a mild increase in body weight accompanied by mild metabolic alterations. Upon OVA challenge, CD-fed mice developed strong AHR and airway inflammation, which were markedly reduced in HFD-fed mice. Mucus production was similar in both treatment groups. OVA-induced increases in DC and CD4+ T-cell recruitment to the lungs were significantly attenuated in HFD-fed mice. MHC-II expression and CD40 expression in pulmonary CD11b+ DCs were markedly lower in HFD-fed compared to CD-fed mice, which was associated in vivo with a decreased T helper (Th) 1/17 differentiation and Treg formation without impacting Th2 differentiation. CONCLUSIONS/CLINICAL RELEVANCE: These findings suggest that short-term HFD feeding attenuates the development of AHR, airway inflammation, pulmonary DC recruitment and MHC-II/CD40 expression leading to diminished Th1/17 but unchanged Th2 differentiation. Thus, short-term HFD feeding and associated metabolic alterations may have protective effects in allergic asthma development.


Assuntos
Ração Animal , Asma/imunologia , Asma/prevenção & controle , Diferenciação Celular/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Asma/induzido quimicamente , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Feminino , Camundongos
7.
FASEB J ; 31(11): 4707-4719, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28710114

RESUMO

Endogenous circadian clocks regulate 24-h rhythms of physiology and behavior. Circadian rhythm disruption (CRD) is suggested as a risk factor for inflammatory bowel disease. However, the underlying molecular mechanisms remain unknown. Intestinal biopsies from Per1/2 mutant and wild-type (WT) mice were investigated by electron microscopy, immunohistochemistry, and bromodeoxyuridine pulse-chase experiments. TNF-α was injected intraperitoneally, with or without necrostatin-1, into Per1/2 mice or rhythmic and externally desynchronized WT mice to study intestinal epithelial cell death. Experimental chronic colitis was induced by oral administration of dextran sodium sulfate. In vitro, caspase activity was assayed in Per1/2-specific small interfering RNA-transfected cells. Wee1 was overexpressed to study antiapoptosis and the cell cycle. Genetic ablation of circadian clock function or environmental CRD in mice increased susceptibility to severe intestinal inflammation and epithelial dysregulation, accompanied by excessive necroptotic cell death and a reduced number of secretory epithelial cells. Receptor-interacting serine/threonine-protein kinase (RIP)-3-mediated intestinal necroptosis was linked to increased mitotic cell cycle arrest via Per1/2-controlled Wee1, resulting in increased antiapoptosis via cellular inhibitor of apoptosis-2. Together, our data suggest that circadian rhythm stability is pivotal for the maintenance of mucosal barrier function. CRD increases intestinal necroptosis, thus rendering the gut epithelium more susceptible to inflammatory processes.-Pagel, R., Bär, F., Schröder, T., Sünderhauf, A., Künstner, A., Ibrahim, S. M., Autenrieth, S. E., Kalies, K., König, P., Tsang, A. H., Bettenworth, D., Divanovic, S., Lehnert, H., Fellermann, K., Oster, H., Derer, S., Sina, C. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine.


Assuntos
Ritmo Circadiano , Homeostase , Doenças Inflamatórias Intestinais/metabolismo , Animais , Caspases/genética , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Imidazóis/farmacologia , Indóis/farmacologia , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Camundongos , Camundongos Mutantes , Mutação , Necrose , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/efeitos adversos , Fator de Necrose Tumoral alfa/farmacologia
8.
J Immunol ; 195(3): 944-52, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26109645

RESUMO

Regulatory T cells (Tregs), a subset of CD4(+) T cells, dramatically accumulate with age in humans and mice and contribute to age-related immune suppression. Recently, we showed that a majority of accumulating Tregs in aged mice expressed low levels of CD25, and their accrual is associated with declining levels of IL-2 in aged mice. In this study, we further investigated the origin of CD25(lo) Tregs in aged mice. First, aged Tregs had high expression of neuropilin-1 and Helios, and had a broad Vß repertoire. Next, we analyzed the gene expression profile of Tregs, naive T cells, and memory T cells in aged mice. We found that the gene expression profile of aged CD25(lo) Tregs were more related to young CD25(lo) Tregs than to either naive or memory T cells. Further, the gene expression profile of aged Tregs was consistent with recently described "effector" Tregs (eTregs). Additional analysis revealed that nearly all Tregs in aged mice were of an effector phenotype (CD44(hi)CD62L(lo)) and could be further characterized by high levels of ICOS and CD69. ICOS contributed to Treg maintenance in aged mice, because in vivo Ab blockade of ICOSL led to a loss of eTregs, and this loss was rescued in Bim-deficient mice. Further, serum levels of IL-6 increased with age and contributed to elevated expression of ICOS on aged Tregs. Finally, Treg accrual was significantly blunted in aged IL-6-deficient mice. Together, our data show a role for IL-6 in promoting eTreg accrual with age likely through maintenance of ICOS expression.


Assuntos
Envelhecimento/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Interleucina-6/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD/biossíntese , Antígenos de Diferenciação de Linfócitos T/biossíntese , Proteínas Reguladoras de Apoptose/genética , Sequência de Bases , Proteína 11 Semelhante a Bcl-2 , Morte Celular , Sobrevivência Celular , Proteínas de Ligação a DNA/biossíntese , Perfilação da Expressão Gênica , Receptores de Hialuronatos/biossíntese , Memória Imunológica/genética , Memória Imunológica/imunologia , Ligante Coestimulador de Linfócitos T Induzíveis/antagonistas & inibidores , Proteína Coestimuladora de Linfócitos T Induzíveis/biossíntese , Subunidade alfa de Receptor de Interleucina-2/biossíntese , Interleucina-6/sangue , Interleucina-6/genética , Selectina L/biossíntese , Lectinas Tipo C/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropilina-1/biossíntese , Proteínas Proto-Oncogênicas/genética , Análise de Sequência de DNA , Fatores de Transcrição/biossíntese
9.
Gastroenterology ; 148(2): 379-391.e4, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25448926

RESUMO

BACKGROUND & AIMS: Augmenter of liver regeneration (ALR, encoded by GFER) is a widely distributed pleiotropic protein originally identified as a hepatic growth factor. However, little is known about its roles in hepatic physiology and pathology. We created mice with liver-specific deletion of ALR to study its function. METHODS: We developed mice with liver-specific deletion of ALR (ALR-L-KO) using the albumin-Cre/LoxP system. Liver tissues were collected from ALR-L-KO mice and ALR(floxed/floxed) mice (controls) and analyzed by histology, reverse-transcription polymerase chain reaction, immunohistochemistry, electron microscopy, and techniques to measure fibrosis and lipids. Liver tissues from patients with and without advanced liver disease were determined by immunoblot analysis. RESULTS: Two weeks after birth, livers of ALR-L-KO mice contained low levels of ALR and adenosine triphosphate (ATP); they had reduced mitochondrial respiratory function and increased oxidative stress, compared with livers from control mice, and had excessive steatosis, and hepatocyte apoptosis. Levels of carbamyl-palmitoyl transferase 1a and ATP synthase subunit ATP5G1 were reduced in livers of ALR-L-KO mice, indicating defects in mitochondrial fatty acid transport and ATP synthesis. Electron microscopy showed mitochondrial swelling with abnormalities in shapes and numbers of cristae. From weeks 2-4 after birth, levels of steatosis and apoptosis decreased in ALR-L-KO mice, and numbers of ALR-expressing cells increased, along with ATP levels. However, at weeks 4-8 after birth, livers became inflamed, with hepatocellular necrosis, ductular proliferation, and fibrosis; hepatocellular carcinoma developed by 1 year after birth in nearly 60% of the mice. Hepatic levels of ALR were also low in ob/ob mice and alcohol-fed mice with liver steatosis, compared with controls. Levels of ALR were lower in liver tissues from patients with advanced alcoholic liver disease and nonalcoholic steatohepatitis than in control liver tissues. CONCLUSIONS: We developed mice with liver-specific deletion of ALR, and showed that it is required for mitochondrial function and lipid homeostasis in the liver. ALR-L-KO mice provide a useful model for investigating the pathogenesis of steatohepatitis and its complications.


Assuntos
Carcinoma Hepatocelular/etiologia , Fígado Gorduroso/etiologia , Neoplasias Hepáticas/etiologia , Regeneração Hepática/fisiologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/fisiologia , Animais , Apoptose , Redutases do Citocromo/fisiologia , Humanos , Metabolismo dos Lipídeos , Cirrose Hepática Experimental/etiologia , Camundongos , Camundongos Knockout , Mitocôndrias/fisiologia
10.
Hepatology ; 59(5): 1830-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24115079

RESUMO

UNLABELLED: Inflammation plays a central pathogenic role in the pernicious metabolic and end-organ sequelae of obesity. Among these sequelae, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the developed world. The twinned observations that obesity is associated with increased activation of the interleukin (IL)-17 axis and that this axis can regulate liver damage in diverse contexts prompted us to address the role of IL-17RA signaling in the progression of NAFLD. We further examined whether microbe-driven IL-17A regulated NAFLD development and progression. We show here that IL-17RA(-/-) mice respond to high-fat diet stress with significantly greater weight gain, visceral adiposity, and hepatic steatosis than wild-type controls. However, obesity-driven lipid accumulation was uncoupled from its end-organ consequences in IL-17RA(-/-) mice, which exhibited decreased steatohepatitis, nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase enzyme expression, and hepatocellular damage. Neutralization of IL-17A significantly reduced obesity-driven hepatocellular damage in wild-type mice. Further, colonization of mice with segmented filamentous bacteria (SFB), a commensal that induces IL-17A production, exacerbated obesity-induced hepatocellular damage. In contrast, SFB depletion protected from obesity-induced hepatocellular damage. CONCLUSION: These data indicate that obesity-driven activation of the IL-17 axis is central to the development and progression of NAFLD to steatohepatitis and identify the IL-17 pathway as a novel therapeutic target in this condition.


Assuntos
Fígado Gorduroso/etiologia , Interleucina-17/fisiologia , Transdução de Sinais/fisiologia , Animais , Infecções Bacterianas/complicações , Dieta Hiperlipídica , Progressão da Doença , Fígado Gorduroso/microbiologia , Inflamação/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Obesidade/complicações , Espécies Reativas de Oxigênio/metabolismo , Receptores de Interleucina-17/fisiologia
11.
J Immunol ; 191(6): 3347-57, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23956430

RESUMO

All three cytochrome P450 1 (CYP1) monooxygenases are believed to participate in lipid mediator biosynthesis and/or their local inactivation; however, distinct metabolic steps are unknown. We used multiple-reaction monitoring and liquid chromatography-UV coupled with tandem mass spectrometry-based lipid-mediator metabololipidomics to identify and quantify three lipid-mediator metabolomes in basal peritoneal and zymosan-stimulated inflammatory exudates, comparing Cyp1a1/1a2/1b1(⁻/⁻) C57BL/6J-background triple-knockout mice with C57BL/6J wild-type mice. Significant differences between untreated triple-knockout and wild-type mice were not found for peritoneal cell number or type or for basal CYP1 activities involving 11 identified metabolic steps. Following zymosan-initiated inflammation, 18 lipid mediators were identified, including members of the eicosanoids and specialized proresolving mediators (i.e., resolvins and protectins). Compared with wild-type mice, Cyp1 triple-knockout mice exhibited increased neutrophil recruitment in zymosan-treated peritoneal exudates. Zymosan stimulation was associated with eight statistically significantly altered metabolic steps: increased arachidonic acid-derived leukotriene B4 (LTB4) and decreased 5S-hydroxyeicosatetraenoic acid; decreased docosahexaenoic acid-derived neuroprotectin D1/protectin D1, 17S-hydroxydocosahexaenoic acid, and 14S-hydroxydocosahexaenoic acid; and decreased eicosapentaenoic acid-derived 18R-hydroxyeicosapentaenoic acid (HEPE), 15S-HEPE, and 12S-HEPE. In neutrophils analyzed ex vivo, elevated LTB4 levels were shown to parallel increased neutrophil numbers, and 20-hydroxy-LTB4 formation was found to be deficient in Cyp1 triple-knockout mice. Together, these results demonstrate novel contributions of CYP1 enzymes to the local metabolite profile of lipid mediators that regulate neutrophilic inflammation.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Transdução de Sinais/imunologia , Animais , Sistema Enzimático do Citocromo P-450/imunologia , Humanos , Inflamação/imunologia , Mediadores da Inflamação/imunologia , Lipídeos/imunologia , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo
12.
Nature ; 457(7229): 585-8, 2009 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19060881

RESUMO

Aeroallergy results from maladaptive immune responses to ubiquitous, otherwise innocuous environmental proteins. Although the proteins targeted by aeroallergic responses represent a tiny fraction of the airborne proteins humans are exposed to, allergenicity is a quite public phenomenon-the same proteins typically behave as aeroallergens across the human population. Why particular proteins tend to act as allergens in susceptible hosts is a fundamental mechanistic question that remains largely unanswered. The main house-dust-mite allergen, Der p 2, has structural homology with MD-2 (also known as LY96), the lipopolysaccharide (LPS)-binding component of the Toll-like receptor (TLR) 4 signalling complex. Here we show that Der p 2 also has functional homology, facilitating signalling through direct interactions with the TLR4 complex, and reconstituting LPS-driven TLR4 signalling in the absence of MD-2. Mirroring this, airway sensitization and challenge with Der p 2 led to experimental allergic asthma in wild type and MD-2-deficient, but not TLR4-deficient, mice. Our results indicate that Der p 2 tends to be targeted by adaptive immune responses because of its auto-adjuvant properties. The fact that other members of the MD-2-like lipid-binding family are allergens, and that most defined major allergens are thought to be lipid-binding proteins, suggests that intrinsic adjuvant activity by such proteins and their accompanying lipid cargo may have some generality as a mechanism underlying the phenomenon of allergenicity.


Assuntos
Alérgenos/imunologia , Alérgenos/metabolismo , Antígenos de Dermatophagoides/imunologia , Antígenos de Dermatophagoides/metabolismo , Mimetismo Molecular/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Ar , Alérgenos/química , Alérgenos/genética , Animais , Antígenos de Dermatophagoides/química , Antígenos de Dermatophagoides/genética , Proteínas de Artrópodes , Asma/genética , Asma/imunologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Lipopolissacarídeos/imunologia , Antígeno 96 de Linfócito/química , Antígeno 96 de Linfócito/deficiência , Antígeno 96 de Linfócito/genética , Antígeno 96 de Linfócito/imunologia , Antígeno 96 de Linfócito/metabolismo , Camundongos , Ligação Proteica , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética
13.
Proc Natl Acad Sci U S A ; 109(41): 16630-5, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23012424

RESUMO

Airway mucus plays a critical role in clearing inhaled toxins, particles, and pathogens. Diverse toxic, inflammatory, and infectious insults induce airway mucus secretion and goblet cell metaplasia to preserve airway sterility and homeostasis. However, goblet cell metaplasia, mucus hypersecretion, and airway obstruction are integral features of inflammatory lung diseases, including asthma, chronic obstructive lung disease, and cystic fibrosis, which cause an immense burden of morbidity and mortality. These chronic lung diseases are united by susceptibility to microbial colonization and recurrent airway infections. Whether these twinned phenomena (mucous metaplasia, compromised host defenses) are causally related has been unclear. Here, we demonstrate that SAM pointed domain ETS factor (SPDEF) was induced by rhinoviral infection of primary human airway cells and that cytoplasmic activities of SPDEF, a transcriptional regulator of airway goblet cell metaplasia, inhibited Toll-like receptor (TLR) activation of epithelial cells. SPDEF bound to and inhibited activities of TLR signaling adapters, MyD88 and TRIF, inhibiting MyD88-induced cytokine production and TRIF-induced interferon ß production. Conditional expression of SPDEF in airway epithelial cells in vivo inhibited LPS-induced neutrophilic infiltration and bacterial clearance. SPDEF-mediated inhibition of both TLR and type I interferon signaling likely protects the lung against inflammatory damage when inciting stimuli are not eradicated. Present findings provide, at least in part, a molecular explanation for increased susceptibility to infection in lung diseases associated with mucous metaplasia and a mechanism by which patients with florid mucous metaplasia may tolerate microbial burdens that are usually associated with fulminant inflammatory disease in normal hosts.


Assuntos
Células Epiteliais/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Mucosa Respiratória/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Antibacterianos/farmacologia , Western Blotting , Doxiciclina/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Interleucina-13/farmacologia , Lipopolissacarídeos/farmacologia , Pneumopatias/tratamento farmacológico , Pneumopatias/metabolismo , Pneumopatias/patologia , Metaplasia , Camundongos , Microscopia Confocal , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-ets/genética , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhinovirus/fisiologia , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
14.
J Immunol ; 188(5): 2065-9, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22291190

RESUMO

Mechanistic understanding of RP105 has been confounded by the fact that this TLR homolog has appeared to have opposing, cell type-specific effects on TLR4 signaling. Although RP105 inhibits TLR4-driven signaling in cell lines and myeloid cells, impaired LPS-driven proliferation by B cells from RP105(-/-) mice has suggested that RP105 facilitates TLR4 signaling in B cells. In this article, we show that modulation of B cell proliferation by RP105 is not a function of B cell-intrinsic expression of RP105, and identify a mechanistic role for dysregulated BAFF expression in the proliferative abnormalities of B cells from RP105(-/-) mice: serum BAFF levels are elevated in RP105(-/-) mice, and partial BAFF neutralization rescues aberrant B cell proliferative responses in such mice. These data indicate that RP105 does not have dichotomous effects on TLR4 signaling and emphasize the need for caution in interpreting the results of global genetic deletion.


Assuntos
Antígenos CD/fisiologia , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Proliferação de Células , Receptor 4 Toll-Like/fisiologia , Animais , Antígenos CD/genética , Fator Ativador de Células B/antagonistas & inibidores , Fator Ativador de Células B/biossíntese , Fator Ativador de Células B/sangue , Subpopulações de Linfócitos B/metabolismo , Células Cultivadas , Inativação Gênica/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos
15.
Mol Ther ; 21(5): 1014-23, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23481323

RESUMO

Understanding the host response to oncolytic viruses is important to maximize their antitumor efficacy. Despite robust cytotoxicity and high virus production of an oncolytic herpes simplex virus (oHSV) in cultured human sarcoma cells, intratumoral (ITu) virus injection resulted in only mild antitumor effects in some xenograft models, prompting us to characterize the host inflammatory response. Virotherapy induced an acute neutrophilic infiltrate, a relative decrease of ITu macrophages, and a myeloid cell-dependent upregulation of host-derived vascular endothelial growth factor (VEGF). Anti-VEGF antibodies, bevacizumab and r84, the latter of which binds VEGF and selectively inhibits binding to VEGF receptor-2 (VEGFR2) but not VEGFR1, enhanced the antitumor effects of virotherapy, in part due to decreased angiogenesis but not increased virus production. Neither antibody affected neutrophilic infiltration but both partially mitigated virus-induced depletion of macrophages. Enhancement of virotherapy-mediated antitumor effects by anti-VEGF antibodies could largely be recapitulated by systemic depletion of CD11b(+) cells. These data suggest the combined effect of oHSV virotherapy and anti-VEGF antibodies is in part due to modulation of a host inflammatory reaction to virus. Our data provide strong preclinical support for combined oHSV and anti-VEGF antibody therapy and suggest that understanding and counteracting the innate host response may help enable the full antitumor potential of oncolytic virotherapy.


Assuntos
Vetores Genéticos/imunologia , Células Mieloides/imunologia , Neoplasias/imunologia , Vírus Oncolíticos/imunologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacologia , Bevacizumab , Antígeno CD11b/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Vetores Genéticos/administração & dosagem , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Células Mieloides/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Neovascularização Patológica/terapia , Terapia Viral Oncolítica , Sarcoma/imunologia , Sarcoma/metabolismo , Sarcoma/terapia , Simplexvirus/imunologia , Células Estromais/metabolismo , Células Estromais/virologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/imunologia , Replicação Viral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Obesity (Silver Spring) ; 32(6): 1187-1197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38664233

RESUMO

OBJECTIVE: Weight loss following vertical sleeve gastrectomy (VSG) in youth can range from 10% to 50%. We examined whether there are differences in demographic or metabolic parameters before VSG in youth who achieve above-average weight loss (AAWL) versus below-average weight loss (BAWL) at 1 year post VSG and if youth with BAWL still achieve metabolic health improvements at 1 year post VSG. METHODS: Demographic, anthropometric, and clinical lab data were collected before VSG and at 1, 3, 6, and 12 months after VSG. RESULTS: Forty-three youth with a mean age of 16.9 (SD 1.7) years before VSG were studied; 70% were female, 19% non-Hispanic Black, 58% non-Hispanic White, and 23% mixed/other race. Mean baseline BMI was 51.1 (SD 10.5) kg/m2. Average weight loss was 25.8%. The AAWL group lost 18.6 kg/m2 (35.3%) versus the BAWL group, who lost 8.8 kg/m2 (17.5%). BMI, age, race, sex, and socioeconomic status at baseline were similar between AAWL and BAWL groups; however, the BAWL group had a higher frequency of pre-VSG dysglycemia, steatotic liver disease, and dyslipidemia. At 1 year post VSG, fewer youth in the BAWL group achieved ideal health parameters, and they had less resolution of comorbidities. CONCLUSIONS: The presence of comorbidities before VSG is associated with less weight loss and reduced resolution of metabolic conditions at 1 year post VSG.


Assuntos
Índice de Massa Corporal , Gastrectomia , Redução de Peso , Humanos , Feminino , Masculino , Adolescente , Gastrectomia/métodos , Gastrectomia/efeitos adversos , Resultado do Tratamento , Obesidade Mórbida/cirurgia , Obesidade Infantil/cirurgia , Dislipidemias/epidemiologia , Cirurgia Bariátrica/métodos , Período Pré-Operatório
17.
Sci Rep ; 14(1): 12879, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839896

RESUMO

Paneth cells (PCs), a subset of intestinal epithelial cells (IECs) found at the base of small intestinal crypts, play an essential role in maintaining intestinal homeostasis. Altered PCs function is associated with diverse intestinal pathologies, including ileal Crohn's disease (CD). CD patients with ileal involvement have been previously demonstrated to display impairment in PCs and decreased levels of anti-microbial peptides. Although the immunosuppressive drug Azathioprine (AZA) is widely used in CD therapy, the impact of AZA on IEC differentiation remains largely elusive. In the present study, we hypothesized that the orally administered drug AZA also exerts its effect through modulation of the intestinal epithelium and specifically via modulation of PC function. AZA-treated CD patients exhibited an ileal upregulation of AMPs on both mRNA and protein levels compared to non-AZA treated patients. Upon in vitro AZA stimulation, intestinal epithelial cell line MODE-K exhibited heightened expression levels of PC marker in concert with diminished cell proliferation but boosted mitochondrial OXPHOS activity. Moreover, differentiation of IECs, including PCs differentiation, was boosted in AZA-treated murine small intestinal organoids and was associated with decreased D-glucose consumption and decreased growth rates. Of note, AZA treatment strongly decreased Lgr5 mRNA expression as well as Ki67 positive cells. Further, AZA restored dysregulated PCs associated with mitochondrial dysfunction. AZA-dependent inhibition of IEC proliferation is accompanied by boosted mitochondria function and IEC differentiation into PC.


Assuntos
Azatioprina , Diferenciação Celular , Doença de Crohn , Mucosa Intestinal , Celulas de Paneth , Doença de Crohn/tratamento farmacológico , Doença de Crohn/patologia , Doença de Crohn/metabolismo , Azatioprina/farmacologia , Celulas de Paneth/metabolismo , Celulas de Paneth/efeitos dos fármacos , Celulas de Paneth/patologia , Humanos , Diferenciação Celular/efeitos dos fármacos , Animais , Camundongos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Feminino , Masculino , Íleo/efeitos dos fármacos , Íleo/metabolismo , Íleo/patologia , Adulto , Organoides/efeitos dos fármacos , Organoides/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proliferação de Células/efeitos dos fármacos , Pessoa de Meia-Idade , Linhagem Celular , Índice de Gravidade de Doença
18.
Am J Pathol ; 180(5): 2001-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22426339

RESUMO

The balance between alternatively activated macrophages (AAMs)/M2 cells and classically activated macrophages (M1 cells) is largely dependent on the effects of IL-4 and interferon (IFN)-γ, respectively. Although AAM/M2 cells can suppress inflammation and repair damaged tissue, M1 cells produce an array of pro-inflammatory molecules. Macrophage effector functions are critical for host protection against many infectious diseases, but it remains unknown whether lethal immunopathological characteristics, caused by Schistosoma mansoni infection in IL-4 receptor α-deficient mice (IL-4Rα(-/-)), results from the absence of M2 cells or increased numbers of M1 cells. In this study, we generated mice that completely lack IL-4Rα signaling in the context of a macrophage-specific loss of IFN-γ responsiveness (MIIG × IL-4Rα(-/-)). Contrary to what we expected, acute schistosomiasis resulted in greater liver injury and mortality in MIIG × IL-4Rα(-/-) mice compared with IL-4Rα(-/-) mice. Greater tissue injury in MIIG × IL-4Rα(-/-) mice was likely because of a lack of indoleamine 2,3 dioxygenase (IDO), a critical regulator of immunosuppression. Indeed, MIIG × IL-4Rα(-/-) failed to up-regulate IDO expression, and IL-4Rα(-/-) mice treated with an IDO antagonist underwent greater liver damage and mortality compared with mock-treated IL-4Rα(-/-) mice. Thus, we propose that, in the absence of AAM/M2 cells, IFN-γ-induced M1 cells suppress tissue-damaging inflammation during acute schistosomiasis through an IDO-dependent mechanism.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Interferon gama/imunologia , Macrófagos/enzimologia , Receptores de Interleucina-4/deficiência , Esquistossomose mansoni/imunologia , Doença Aguda , Animais , Citocinas/biossíntese , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Interleucina-13/imunologia , Interleucina-4/imunologia , Fígado/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Receptores de Interleucina-4/imunologia , Esquistossomose mansoni/enzimologia , Transdução de Sinais/imunologia , Análise de Sobrevida , Redução de Peso/imunologia
19.
J Infect Dis ; 205(1): 152-61, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21990421

RESUMO

Recent studies have underscored physiological and pathophysiological roles for the tryptophan-degrading enzyme indolamine 2,3-dioxygenase (IDO) in immune counterregulation. However, IDO was first recognized as an antimicrobial effector, restricting tryptophan availability to Toxoplasma gondii and other pathogens in vitro. The biological relevance of these findings came under question when infectious phenotypes were not forthcoming in IDO-deficient mice. The recent discovery of an IDO homolog, IDO-2, suggested that the issue deserved reexamination. IDO inhibition during murine toxoplasmosis led to 100% mortality, with increased parasite burdens and no evident effects on the immune response. Similar studies revealed a counterregulatory role for IDO during leishmaniasis (restraining effector immune responses and parasite clearance), and no evident role for IDO in herpes simplex virus type 1 (HSV-1) infection. Thus, IDO plays biologically important roles in the host response to diverse intracellular infections, but the dominant nature of this role--antimicrobial or immunoregulatory--is pathogen-specific.


Assuntos
Herpes Simples/enzimologia , Herpesvirus Humano 1 , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Leishmaniose Cutânea/imunologia , Toxoplasmose Animal/imunologia , Animais , Feminino , Herpes Simples/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Leishmaniose Cutânea/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Toxoplasmose Animal/enzimologia , Triptofano/análogos & derivados , Triptofano/metabolismo
20.
STAR Protoc ; 4(4): 102643, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37858473

RESUMO

Inflammation-driven preterm birth (PTB) is modeled in mice using lipopolysaccharide (LPS) challenge. Here, we present a protocol for cytokine and uterine immune cell characterization in a mouse model of LPS-induced PTB. We describe steps for LPS challenge, in vivo cytokine capture assay, and isolation of uterine immune cells for flow cytometry. These techniques allow examination of systemic inflammation in vivo and immune cell characterization at the maternal-fetal interface, facilitating exploration of inflammatory dynamics in mouse models of PTB susceptibility. For complete details on the use and execution of this protocol, please refer to Doll et al.1.


Assuntos
Citocinas , Nascimento Prematuro , Recém-Nascido , Feminino , Humanos , Animais , Camundongos , Citocinas/efeitos adversos , Lipopolissacarídeos/efeitos adversos , Nascimento Prematuro/induzido quimicamente , Útero , Inflamação/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA