Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angiogenesis ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546923

RESUMO

Vascular mimicry has been thoroughly investigated in tumor angiogenesis. In this study, we demonstrate for the first time that a process closely resembling tumor vascular mimicry is present during physiological blood vessel formation in tissue regeneration using the zebrafish fin regeneration assay. At the fin-regenerating front, vasculature is formed by mosaic blood vessels with endothelial-like cells possessing the morphological phenotype of a macrophage and co-expressing both endothelial and macrophage markers within single cells. Our data demonstrate that the vascular segments of the regenerating tissue expand, in part, through the transformation of adjacent macrophages into endothelial-like cells, forming functional, perfused channels and contributing to the de novo formation of microvasculature. Inhibiting the formation of tubular vascular-like structures by CVM-1118 prevents vascular mimicry and network formation resulting in a 70% shorter regeneration area with 60% reduced vessel growth and a complete absence of any signs of regeneration in half of the fin area. Additionally, this is associated with a significant reduction in macrophages. Furthermore, depleting macrophages using macrophage inhibitor PLX-3397, results in impaired tissue regeneration and blood vessel formation, namely a reduction in the regeneration area and vessel network by 75% in comparison to controls.

2.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673961

RESUMO

Mesenchymal stem cell-derived exosomes (MSC-Exos) are nano-sized extracellular vesicles which contain various MSC-sourced anti-fibrotic, immunoregulatory and angio-modulatory proteins (growth factors, immunoregulatory cytokines, chemokines), lipids, and nucleic acids (messenger RNA and microRNAs). Due to their lipid envelope, MSC-Exos easily by-pass all barriers in the body and deliver their cargo directly in target cells, modulating their viability, proliferation, phenotype and function. The results obtained in recently published experimental studies demonstrated beneficial effects of MSC-Exos in the treatment of lung fibrosis. MSC-Exos reduced activation of fibroblasts and prevented their differentiation in myofibroblasts. By delivering MSC-sourced immunoregulatory factors in lung-infiltrated monocytes and T cells, MSC-Exos modulate their function, alleviating on-going inflammation and fibrosis. MSC-Exos may also serve as vehicles for the target delivery of anti-fibrotic and immunomodulatory agents, enabling enhanced attenuation of lung fibrosis. Although numerous pre-clinical studies have demonstrated the therapeutic potential of MSC-Exos in the treatment of pulmonary fibrosis, there are several challenges that currently hinder their clinical implementation. Therefore, in this review article, we summarized current knowledge and we discussed future perspectives regarding molecular and cellular mechanisms which were responsible for the anti-fibrotic, anti-inflammatory and immunoregulatory properties of MSC-Exos, paving the way for their clinical use in the treatment of lung fibrosis.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Fibrose Pulmonar , Exossomos/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Fibrose Pulmonar/terapia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Animais
3.
Nicotine Tob Res ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38018885

RESUMO

INTRODUCTION: Although detrimental effects of combustible cigarettes (CCs) on the progression of lung inflammatory diseases are well known, changes in electronic nicotine delivery systems (ENDS)-exposed lung-infiltrated immune cells are still unrevealed. METHODS: The analysis of blood gas parameters, descriptive and quantitative histology of lung tissues, determination of serum cytokines, intracellular staining and flow cytometry analysis of lung-infiltrated immune cells were used to determine the differences in the extent of lung injury and inflammation between mice from experimental (CC and ENDS-exposed animals) and control group (Air-exposed mice). RESULTS: Continuous exposition to either CCs or ENDS induced severe systemic inflammatory response, increased activation of NLRP3 inflammasome in neutrophils and macrophages and enhanced dendritic cell-dependent activation of Th1 and Th17 cells in the lungs. ENDS induced less severe immune response than CCs. Serum concentrations of inflammatory cytokines were significantly lower in the samples of ENDS-exposed mice. Compared to CCs, ENDS recruited lower number of circulating leukocytes in injured lungs and had less capacity to induce CD14/TLR-2-dependent activation of NLRP3 inflammasome in lung-infiltrated neutrophils and macrophages. ENDS-primed dendritic cells had reduced capacity for the generation of Th1 and Th17 cell-driven lung inflammation. Accordingly, extensive immune cell-driven lung injury resulted in severe respiratory dysfunction in CCs-exposed mice, while ENDS caused moderate respiratory dysfunction in experimental animals. CONCLUSIONS: Continuous exposition to either CCs or ENDS induced immune cell-driven lung damage in mice. ENDS triggered immune response which was less potent than inflammatory response elicited by CCs and, therefore, caused less severe lung injury and inflammation. IMPLICATIONS: This is the first study that compared the effects of CCs and ENDS on lung-infiltrated immune cells. Although both CCs and ENDS elicited systemic inflammatory response, immune cell-driven lung injury and inflammation were less severe in ENDS-exposed than in CC-exposed animals. Continuous exposition to ENDS-sourced aerosols was less harmful for respiratory function of experimental animals than CC-derived smoke.

4.
Cell Mol Life Sci ; 79(8): 445, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35877003

RESUMO

Once considered a waste product of anaerobic cellular metabolism, lactate has been identified as a critical regulator of tumorigenesis, maintenance, and progression. The putative primary function of lactate dehydrogenase B (LDHB) is to catalyze the conversion of lactate to pyruvate; however, its role in regulating metabolism during tumorigenesis is largely unknown. To determine whether LDHB plays a pivotal role in tumorigenesis, we performed 2D and 3D in vitro experiments, utilized a conventional xenograft tumor model, and developed a novel genetically engineered mouse model (GEMM) of non-small cell lung cancer (NSCLC), in which we combined an LDHB deletion allele with an inducible model of lung adenocarcinoma driven by the concomitant loss of p53 (also known as Trp53) and expression of oncogenic KRAS (G12D) (KP). Here, we show that epithelial-like, tumor-initiating NSCLC cells feature oxidative phosphorylation (OXPHOS) phenotype that is regulated by LDHB-mediated lactate metabolism. We show that silencing of LDHB induces persistent mitochondrial DNA damage, decreases mitochondrial respiratory complex activity and OXPHOS, resulting in reduced levels of mitochondria-dependent metabolites, e.g., TCA intermediates, amino acids, and nucleotides. Inhibition of LDHB dramatically reduced the survival of tumor-initiating cells and sphere formation in vitro, which can be partially restored by nucleotide supplementation. In addition, LDHB silencing reduced tumor initiation and growth of xenograft tumors. Furthermore, we report for the first time that homozygous deletion of LDHB significantly reduced lung tumorigenesis upon the concomitant loss of Tp53 and expression of oncogenic KRAS without considerably affecting the animal's health status, thereby identifying LDHB as a potential target for NSCLC therapy. In conclusion, our study shows for the first time that LDHB is essential for the maintenance of mitochondrial metabolism, especially nucleotide metabolism, demonstrating that LDHB is crucial for the survival and proliferation of NSCLC tumor-initiating cells and tumorigenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Homozigoto , Humanos , Isoenzimas , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactatos/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Nucleotídeos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Deleção de Sequência
5.
Nanomedicine ; 49: 102655, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681171

RESUMO

Herein, we provide the first description of a synthetic delivery method for self-replicating replicon RNAs (RepRNA) derived from classical swine fever virus (CSFV) using a Coatsome-replicon vehicle based on Coatsome® SS technologies. This results in an unprecedented efficacy when compared to well-established polyplexes, with up to ∼65 fold-increase of the synthesis of RepRNA-encoded gene of interest (GOI). We demonstrated the efficacy of such Coatsome-replicon vehicles for RepRNA-mediated induction of CD8 T-cell responses in mice. Moreover, we provide new insights on physical properties of the RepRNA, showing that the removal of all CSFV structural protein genes has a positive effect on the translation of the GOI. Finally, we successfully engineered RepRNA constructs encoding a porcine reproductive and respiratory syndrome virus (PRRSV) antigen, providing an example of antigen expression with potential application to combat viral diseases. The versatility and simplicity of modifying and manufacturing these Coatsome-replicon vehicle formulations represents a major asset to tackle foreseeable emerging pandemics.


Assuntos
Doenças Transmissíveis , RNA , Suínos , Camundongos , Animais , RNA/genética , Antígenos , Doenças Transmissíveis/genética , Replicon/genética
6.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835120

RESUMO

Mesenchymal stem cells (MSCs) are adult stem cells that reside in almost all postnatal tissues where, due to the potent regenerative, pro-angiogenic and immunomodulatory properties, regulate tissue homeostasis. Obstructive sleep apnea (OSA) induces oxidative stress, inflammation and ischemia which recruit MSCs from their niches in inflamed and injured tissues. Through the activity of MSC-sourced anti-inflammatory and pro-angiogenic factors, MSCs reduce hypoxia, suppress inflammation, prevent fibrosis and enhance regeneration of damaged cells in OSA-injured tissues. The results obtained in large number of animal studies demonstrated therapeutic efficacy of MSCs in the attenuation of OSA-induced tissue injury and inflammation. Herewith, in this review article, we emphasized molecular mechanisms which are involved in MSC-based neo-vascularization and immunoregulation and we summarized current knowledge about MSC-dependent modulation of OSA-related pathologies.


Assuntos
Células-Tronco Adultas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Apneia Obstrutiva do Sono , Animais , Inflamação/terapia , Anti-Inflamatórios/farmacologia , Imunomodulação , Apneia Obstrutiva do Sono/patologia
7.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069025

RESUMO

Intussusceptive pillars, regarded as a hallmark of intussusceptive angiogenesis, have been described in developing vasculature of many organs and organisms. The aim of this study was to resolve the question about pillar formation and their further maturation employing zebrafish caudal vein plexus (CVP). The CVP development was monitored by in vivo confocal microscopy in high spatio-temporal resolution using the transgenic zebrafish model Fli1a:eGPF//Gata1:dsRed. We tracked back the formation of pillars (diameter ≤ 4 µm) and intercapillary meshes (diameter > 4 µm) and analysed their morphology and behaviour. Transluminal pillars in the CVP arose via a combination of sprouting, lumen expansion, and/or the creation of intraluminal folds, and those mechanisms were not associated directly with blood flow. The follow-up of pillars indicated that one-third of them disappeared between 28 and 48 h post fertilisation (hpf), and of the remaining ones, only 1/17 changed their cross-section area by >50%. The majority of the bigger meshes (39/62) increased their cross-section area by >50%. Plexus simplification and the establishment of hierarchy were dominated by the dynamics of intercapillary meshes, which formed mainly via sprouting angiogenesis. These meshes were observed to grow, reshape, and merge with each other. Our observations suggested an alternative view on intussusceptive angiogenesis in the CVP.


Assuntos
Intussuscepção , Peixe-Zebra , Animais , Morfogênese , Hemodinâmica , Microscopia Intravital , Neovascularização Fisiológica/fisiologia
8.
Circulation ; 143(1): 65-77, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33203221

RESUMO

BACKGROUND: Recent discoveries have indicated that, in the developing heart, sinus venosus and endocardium provide major sources of endothelium for coronary vessel growth that supports the expanding myocardium. Here we set out to study the origin of the coronary vessels that develop in response to vascular endothelial growth factor B (VEGF-B) in the heart and the effect of VEGF-B on recovery from myocardial infarction. METHODS: We used mice and rats expressing a VEGF-B transgene, VEGF-B-gene-deleted mice and rats, apelin-CreERT, and natriuretic peptide receptor 3-CreERT recombinase-mediated genetic cell lineage tracing and viral vector-mediated VEGF-B gene transfer in adult mice. Left anterior descending coronary vessel ligation was performed, and 5-ethynyl-2'-deoxyuridine-mediated proliferating cell cycle labeling; flow cytometry; histological, immunohistochemical, and biochemical methods; single-cell RNA sequencing and subsequent bioinformatic analysis; microcomputed tomography; and fluorescent- and tracer-mediated vascular perfusion imaging analyses were used to study the development and function of the VEGF-B-induced vessels in the heart. RESULTS: We show that cardiomyocyte overexpression of VEGF-B in mice and rats during development promotes the growth of novel vessels that originate directly from the cardiac ventricles and maintain connection with the coronary vessels in subendocardial myocardium. In adult mice, endothelial proliferation induced by VEGF-B gene transfer was located predominantly in the subendocardial coronary vessels. Furthermore, VEGF-B gene transduction before or concomitantly with ligation of the left anterior descending coronary artery promoted endocardium-derived vessel development into the myocardium and improved cardiac tissue remodeling and cardiac function. CONCLUSIONS: The myocardial VEGF-B transgene promotes the formation of endocardium-derived coronary vessels during development, endothelial proliferation in subendocardial myocardium in adult mice, and structural and functional rescue of cardiac tissue after myocardial infarction. VEGF-B could provide a new therapeutic strategy for cardiac neovascularization after coronary occlusion to rescue the most vulnerable myocardial tissue.


Assuntos
Vasos Coronários/metabolismo , Endocárdio/metabolismo , Infarto do Miocárdio/metabolismo , Regeneração/fisiologia , Fator B de Crescimento do Endotélio Vascular/biossíntese , Animais , Transdiferenciação Celular/fisiologia , Células Cultivadas , Vasos Coronários/patologia , Endocárdio/patologia , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Transgênicos , Fator B de Crescimento do Endotélio Vascular/deficiência , Fator B de Crescimento do Endotélio Vascular/genética
9.
J Immunol ; 205(10): 2640-2648, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33008951

RESUMO

IVIG preparations consisting of pooled IgG are increasingly used for the treatment of autoimmune diseases. IVIG is known to regulate the viability of immune cells, including neutrophils. We report that plasma-derived IgA efficiently triggers death of neutrophils primed by cytokines or TLR agonists. IgA-mediated programmed neutrophil death was PI3K-, p38 MAPK-, and JNK-dependent and evoked anti-inflammatory cytokines in macrophage cocultures. Neutrophils from patients with acute Crohn's disease, rheumatoid arthritis, or sepsis were susceptible to both IgA- and IVIG-mediated death. In contrast to IVIG, IgA did not promote cell death of quiescent neutrophils. Our findings suggest that plasma-derived IgA might provide a therapeutic option for the treatment of neutrophil-associated inflammatory disorders.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Doença de Crohn/tratamento farmacológico , Imunoglobulina A/farmacologia , Neutrófilos/efeitos dos fármacos , Sepse/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Artrite Reumatoide/sangue , Artrite Reumatoide/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Doença de Crohn/sangue , Doença de Crohn/imunologia , Humanos , Imunoglobulina A/uso terapêutico , Imunoglobulinas Intravenosas/farmacologia , Imunoglobulinas Intravenosas/uso terapêutico , Macrófagos , Camundongos , Neutrófilos/imunologia , Cultura Primária de Células , Sepse/sangue , Sepse/imunologia
10.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362040

RESUMO

Ocular GVHD (oGVHD), manifested by severe injury of corneal epithelial cells, meibomian and lacrimal glands' dysfunction, is a serious complication of systemic GVHD which develops as a consequence of donor T and natural killer cell-driven inflammation in the eyes of patients who received allogeneic hematopoietic stem cell transplantation. Mesenchymal stem cells (MSC) are, due to their enormous differentiation potential and immunosuppressive characteristics, considered as a potentially new remedy in ophthalmology. MSC differentiate in corneal epithelial cells, suppress eye inflammation, and restore meibomian and lacrimal glands' function in oGVHD patients. MSC-sourced exosomes (MSC-Exos) are extracellular vesicles that contain MSC-derived growth factors and immunoregulatory proteins. Due to the lipid membrane and nano-sized dimension, MSC-Exos easily by-pass all biological barriers in the eyes and deliver their cargo directly in injured corneal epithelial cells and eye-infiltrated leukocytes, modulating their viability and function. As cell-free agents, MSC-Exos address all safety issues related to the transplantation of their parental cells, including the risk of unwanted differentiation and aggravation of intraocular inflammation. In this review article, we summarized current knowledge about molecular mechanisms which are responsible for beneficial effects of MSC and MSC-Exos in the therapy of inflammatory eye diseases, emphasizing their therapeutic potential in the treatment of oGVHD.


Assuntos
Exossomos , Oftalmopatias , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/terapia , Doença Enxerto-Hospedeiro/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Exossomos/metabolismo , Inflamação/metabolismo , Oftalmopatias/etiologia , Oftalmopatias/terapia , Transplante de Células-Tronco Mesenquimais/efeitos adversos
11.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562878

RESUMO

Therapeutic agents that are able to prevent or attenuate inflammation and ischemia-induced injury of neural and retinal cells could be used for the treatment of neural and retinal diseases. Exosomes derived from adipose tissue-sourced mesenchymal stem cells (AT-MSC-Exos) are extracellular vesicles that contain neurotrophins, immunoregulatory and angio-modulatory factors secreted by their parental cells. AT-MSC-Exos are enriched with bioactive molecules (microRNAs (miRNAs), enzymes, cytokines, chemokines, immunoregulatory, trophic, and growth factors), that alleviate inflammation and promote the survival of injured cells in neural and retinal tissues. Due to the nano-sized dimension and bilayer lipid envelope, AT-MSC-Exos easily bypass blood-brain and blood-retinal barriers and deliver their cargo directly into the target cells. Accordingly, a large number of experimental studies demonstrated the beneficial effects of AT-MSC-Exos in the treatment of neural and retinal diseases. By delivering neurotrophins, AT-MSC-Exos prevent apoptosis of injured neurons and retinal cells and promote neuritogenesis. AT-MSC-Exos alleviate inflammation in the injured brain, spinal cord, and retinas by delivering immunoregulatory factors in immune cells, suppressing their inflammatory properties. AT-MSC-Exos may act as biological mediators that deliver pro-angiogenic miRNAs in endothelial cells, enabling re-vascularization of ischemic neural and retinal tissues. Herewith, we summarized current knowledge about molecular mechanisms which were responsible for the beneficial effects of AT-MSC-Exos in the treatment of neural and retinal diseases, emphasizing their therapeutic potential in neurology and ophthalmology.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Doenças Retinianas , Tecido Adiposo , Células Endoteliais , Exossomos/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/terapia , Isquemia/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Crescimento Neural/metabolismo , Doenças Retinianas/metabolismo , Doenças Retinianas/terapia
12.
Radiology ; 298(1): 135-146, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107800

RESUMO

Background Modern high-spatial-resolution radiologic methods enable increasingly detailed volumetric postmortem investigations of human neuroanatomy for diagnostic, research, and educational purposes. Purpose To evaluate the viability of postmortem x-ray phase-contrast micro-CT to provide tissue-conserving, high-spatial-resolution, three-dimensional neuroimaging of the human spinal cord and column by comparing quality of x-ray phase-contrast micro-CT images of nondissected Thiel-embalmed human spines with images of extracted formalin-fixed human spinal cords. Specific focus was placed on assessing the detection of micrometric spinal cord soft-tissue structure and vasculature. Materials and Methods In this study from August 2015 to August 2019, three Thiel-embalmed human spinal column samples, unilaterally perfused with an iodinated vascular contrast agent, and three extracted formalin-fixed spinal cord samples were imaged postmortem at a synchrotron radiation facility. Propagation-based x-ray phase-contrast micro-CT was used with monochromatic 60-keV x-rays and a detector with either 46-µm or 8-µm pixel sizes. A single-distance phase-retrieval algorithm was applied to the acquired CT projection images in advance of filtered back projection CT reconstruction. The influence on image quality of Thiel versus formalin embalming was examined, and images were qualitatively evaluated in terms of the value of their anatomic representations. Results The x-ray phase-contrast micro-CT of Thiel-embalmed samples resulted in soft-tissue contrast within the vertebral canal, despite evident nervous tissue deterioration after Thiel embalming. Gross spinal cord anatomy, spinal meninges, contrast agent-enhanced spinal vasculature, and spinal nerves were all well rendered alongside surrounding vertebral bone structure. The x-ray phase-contrast micro-CT of formalin-fixed boneless cords led to much higher gray versus white matter contrast and to microscale visualization of deep medullary vasculature and neuronal perikarya. Conclusion This work demonstrated the use of x-ray phase-contrast micro-CT for detailed volumetric anatomic visualization of embalmed human spines. The method provided three-dimensional display of bone, nervous tissue, and vasculature at microscale resolutions without exogenous contrast agents. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
Meios de Contraste , Imageamento Tridimensional/métodos , Intensificação de Imagem Radiográfica/métodos , Medula Espinal/anatomia & histologia , Microtomografia por Raio-X/métodos , Cadáver , Humanos
13.
Int J Mol Sci ; 22(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804369

RESUMO

Mesenchymal stem cells (MSCs) are self-renewable, rapidly proliferating, multipotent stem cells which reside in almost all post-natal tissues. MSCs possess potent immunoregulatory properties and, in juxtacrine and paracrine manner, modulate phenotype and function of all immune cells that participate in tissue repair and regeneration. Additionally, MSCs produce various pro-angiogenic factors and promote neo-vascularization in healing tissues, contributing to their enhanced repair and regeneration. In this review article, we summarized current knowledge about molecular mechanisms that regulate the crosstalk between MSCs and immune cells in tissue repair and regeneration.


Assuntos
Linfócitos/imunologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Regeneração , Cicatrização , Animais , Humanos , Imunomodulação , Transplante de Células-Tronco Mesenquimais
14.
Int J Mol Sci ; 22(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535376

RESUMO

Mesenchymal stem cell (MSC)-derived exosomes (MSC-Exo) are nano-sized extracellular vesicles enriched with MSC-sourced neuroprotective and immunomodulatory microRNAs, neural growth factors, and anti-inflammatory cytokines, which attenuate neuro-inflammation, promote neo-vascularization, induce neurogenesis, and reduce apoptotic loss of neural cells. Accordingly, a large number of experimental studies demonstrated MSC-Exo-dependent improvement of cognitive impairment in experimental animals. In this review article, we summarized current knowledge about molecular and cellular mechanisms that were responsible for MSC-Exo-based restoration of cognitive function, emphasizing therapeutic potential of MSC-Exos in the treatment of neurocognitive disorders.


Assuntos
Transtornos Cognitivos/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/citologia , Doença de Alzheimer/metabolismo , Animais , Apoptose , Transtorno do Espectro Autista/metabolismo , Comportamento Animal , Lesões Encefálicas , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Humanos , Inflamação , Transplante de Células-Tronco Mesenquimais , Doenças Neurodegenerativas/metabolismo , Neurogênese , Neurônios/metabolismo , Neuroproteção , Doença de Parkinson/metabolismo , Esquizofrenia/metabolismo
15.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830312

RESUMO

Mesenchymal stem cells (MSCs) are self-renewable, multipotent stem cells that regulate the phenotype and function of all immune cells that participate in anti-tumor immunity. MSCs modulate the antigen-presenting properties of dendritic cells, affect chemokine and cytokine production in macrophages and CD4+ T helper cells, alter the cytotoxicity of CD8+ T lymphocytes and natural killer cells and regulate the generation and expansion of myeloid-derived suppressor cells and T regulatory cells. As plastic cells, MSCs adopt their phenotype and function according to the cytokine profile of neighboring tumor-infiltrated immune cells. Depending on the tumor microenvironment to which they are exposed, MSCs may obtain pro- and anti-tumorigenic phenotypes and may enhance or suppress tumor growth. Due to their tumor-homing properties, MSCs and their exosomes may be used as vehicles for delivering anti-tumorigenic agents in tumor cells, attenuating their viability and invasive characteristics. Since many factors affect the phenotype and function of MSCs in the tumor microenvironment, a better understanding of signaling pathways that regulate the cross-talk between MSCs, immune cells and tumor cells will pave the way for the clinical use of MSCs in cancer immunotherapy. In this review article, we summarize current knowledge on the molecular and cellular mechanisms that are responsible for the MSC-dependent modulation of the anti-tumor immune response and we discuss different insights regarding therapeutic potential of MSCs in the therapy of malignant diseases.


Assuntos
Exossomos/transplante , Imunoterapia/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Comunicação Celular , Diferenciação Celular , Células Dendríticas/citologia , Células Dendríticas/imunologia , Exossomos/química , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Células-Tronco Mesenquimais/citologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/genética
16.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299373

RESUMO

Melanoma is the deadliest type of skin cancer, due to its invasiveness and limited treatment efficacy. The main therapy for primary melanoma and solitary organ metastases is wide excision. Adjuvant therapy, such as chemotherapy and targeted therapies are mainly used for disseminated disease. Radiotherapy (RT) is a powerful treatment option used in more than 50% of cancer patients, however, conventional RT alone is unable to eradicate melanoma. Its general radioresistance is attributed to overexpression of repair genes in combination with cascades of biochemical repair mechanisms. A novel sophisticated technique based on synchrotron-generated, spatially fractionated RT, called Microbeam Radiation Therapy (MRT), has been shown to overcome these treatment limitations by allowing increased dose delivery. With MRT, a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose microbeams that are tens of micrometres wide and spaced a few hundred micrometres apart. Different preclinical models demonstrated that MRT has the potential to completely ablate tumours, or significantly improve tumour control while dramatically reducing normal tissue toxicity. Here, we discuss the role of conventional RT-induced immunity and the potential for MRT to enhance local and systemic anti-tumour immune responses. Comparative gene expression analysis from preclinical tumour models indicated a specific gene signature for an 'MRT-induced immune effect'. This focused review highlights the potential of MRT to overcome the inherent radioresistance of melanoma which could be further enhanced for future clinical use with combined treatment strategies, in particular, immunotherapy.


Assuntos
Melanoma/radioterapia , Animais , Terapia Combinada/métodos , Humanos , Imunidade/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Melanoma/terapia , Radioterapia/métodos , Síncrotrons
17.
J Anat ; 237(3): 487-494, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32427364

RESUMO

The autonomic nerves of the lesser pelvis are particularly prone to iatrogenic lesions due to their exposed position during manifold surgical interventions. Nevertheless, the cause of rectal and urinary incontinence or sexual dysfunctions, for example after rectal cancer resection or hysterectomy, remains largely understudied, particularly with regard to the female pelvic autonomic plexuses. This study focused on the macroscopic description of the superior hypogastric plexus, hypogastric nerves, inferior hypogastric plexus, the parasympathetic pelvic splanchnic nerves and the sympathetic fibres. Their arrangement is described in relation to commonly used surgical landmarks such as the sacral promontory, ureters, uterosacral ligaments, uterine and rectal blood vessels. Thirty-one embalmed female pelvises from 20 formalin-fixed and 11 Thiel-fixed cadavers were prepared. In all cases explored, the superior hypogastric plexus was situated anterior to the bifurcation of the abdominal aorta. In 60% of specimens, it reached the sacral promontory, whereas in 40% of specimens, it continued across the pelvic brim until S1. In about 25% of the subjects, we detected an accessory hypogastric nerve, which has not been systematically described so far. It originated medially from the inferior margin of the superior hypogastric plexus and continued medially into the presacral space. The existence of an accessory hypogastric nerve was confirmed during laparoscopy and by histological examination. The inferior hypogastric plexuses formed fan-shaped plexiform structures at the end of both hypogastric nerves, exactly at the junction of the ureter and the posterior wall of the uterine artery at the uterosacral ligament. In addition to the pelvic splanchnic nerves from S2-S4, which joined the inferior hypogastric plexus, 18% of the specimens in the present study revealed an additional pelvic splanchnic nerve originating from the S1 sacral root. In general, form, breadth and alignment of the autonomic nerves displayed large individual variations, which could also have a clinical impact on the postoperative function of the pelvic organs. The study serves as a basis for future investigations on the autonomic innervation of the female pelvic organs.


Assuntos
Plexo Hipogástrico/anatomia & histologia , Pelve/inervação , Nervos Esplâncnicos/anatomia & histologia , Cadáver , Feminino , Humanos
18.
EMBO Rep ; 19(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29967223

RESUMO

The fate of mesenchymal stem cells (MSCs) in the perivascular niche, as well as factors controlling their fate, is poorly understood. Here, we study MSCs in the perivascular microenvironment of endothelial capillaries by modifying a synthetic 3D biomimetic poly(ethylene glycol) (PEG)-hydrogel system in vitro We show that MSCs together with endothelial cells form micro-capillary networks specifically in soft PEG hydrogels. Transcriptome analysis of human MSCs isolated from engineered capillaries shows a prominent switch in extracellular matrix (ECM) production. We demonstrate that the ECM phenotypic switch of MSCs can be recapitulated in the absence of endothelial cells by functionalizing PEG hydrogels with the Notch-activator Jagged1. Moreover, transient culture of MSCs in Notch-inducing microenvironments reveals the reversibility of this ECM switch. These findings provide insight into the perivascular commitment of MSCs by use of engineered niche-mimicking synthetic hydrogels.


Assuntos
Linhagem da Célula , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Receptores Notch/metabolismo , Células da Medula Óssea/citologia , Capilares/efeitos dos fármacos , Capilares/fisiologia , Capilares/ultraestrutura , Linhagem da Célula/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Técnicas de Cocultura , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura , Polietilenoglicóis/farmacologia
19.
Clin Anat ; 33(2): 265-274, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31625208

RESUMO

The contribution of the left phrenic nerve to innervation of the esophagogastric junction. The esophagogastric junction is part of the barrier preventing gastroesophageal reflux. We have investigated the contribution of the phrenic nerves to innervation of the esophagogastric junction in humans and piglets by dissecting 30 embalmed human specimens and 14 piglets. Samples were microdissected and nerves were stained and examined by light and electron microscopy. In 76.6% of the human specimens, the left phrenic nerve participated in the innervation of the esophagogastric junction by forming a neural network together with the celiac plexus (46.6%) or by sending off a distinct phrenic branch, which joined the anterior vagal trunk (20%). Distinct left phrenic branches were always accompanied by small branches of the left inferior phrenic artery. In 10% there were indirect connections with a distinct phrenic nerve branch joining the celiac ganglion, from which celiac plexus branches to the esophagogastric junction emerged. Morphological examination of phrenic branches revealed strong similarities to autonomic celiac plexus branches. There was no contribution of the left phrenic nerve or accompanying arteries from the caudal phrenic artery in any of the piglets. The right phrenic nerve made no contribution in any of the human or piglet samples. We conclude that the left phrenic nerve in humans contributes to the innervation of the esophagogastric junction by providing ancillary autonomic nerve fibers. Experimental studies of the innervation in pigs should consider that neither of the phrenic nerves was found to contribute. Clin. Anat. 33:265-274, 2020. © 2019 Wiley Periodicals, Inc.


Assuntos
Junção Esofagogástrica/inervação , Nervo Frênico/anatomia & histologia , Idoso , Idoso de 80 Anos ou mais , Variação Anatômica , Animais , Cadáver , Plexo Celíaco/anatomia & histologia , Feminino , Humanos , Masculino , Microscopia Eletrônica , Suínos , Nervo Vago/anatomia & histologia
20.
J Cell Mol Med ; 23(6): 3916-3926, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30950188

RESUMO

The precise mechanisms of SDF-1 (CXCL12) in angiogenesis are not fully elucidated. Recently, we showed that Notch inhibition induces extensive intussusceptive angiogenesis by recruitment of mononuclear cells and it was associated with increased levels of SDF-1 and CXCR4. In the current study, we demonstrated SDF-1 expression in liver sinusoidal vessels of Notch1 knockout mice with regenerative hyperplasia by means of intussusception, but we did not detect any SDF-1 expression in wild-type mice with normal liver vessel structure. In addition, pharmacological inhibition of SDF-1/CXCR4 signalling by AMD3100 perturbs intussusceptive vascular growth and abolishes mononuclear cell recruitment in the chicken area vasculosa. In contrast, treatment with recombinant SDF-1 protein increased microvascular density by 34% through augmentation of pillar number compared to controls. The number of extravasating mononuclear cells was four times higher after SDF-1 application and two times less after blocking this pathway. Bone marrow-derived mononuclear cells (BMDC) were recruited to vessels in response to elevated expression of SDF-1 in endothelial cells. They participated in formation and stabilization of pillars. The current study is the first report to implicate SDF-1/CXCR4 signalling in intussusceptive angiogenesis and further highlights the stabilizing role of BMDC in the formation of pillars during vascular remodelling.


Assuntos
Quimiocina CXCL12/metabolismo , Intussuscepção/metabolismo , Neovascularização Patológica/metabolismo , Receptor Notch1/metabolismo , Receptores CXCR4/metabolismo , Animais , Benzilaminas , Células da Medula Óssea/metabolismo , Adesão Celular/genética , Quimiocina CXCL12/genética , Embrião de Galinha , Ciclamos , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Hepatócitos/metabolismo , Compostos Heterocíclicos/farmacologia , Intussuscepção/genética , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/genética , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/genética , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA