Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 144: 55-66, 2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-36117019

RESUMO

Cell death is a phenomenon, frequently perceived as an absolute event for cell, tissue and the organ. However, the rising popularity and complexity of such 3D multicellular 'tissue building blocks' as heterocellular spheroids, organoids, and 'assembloids' prompts to revise the definition and quantification of cell viability and death. It raises several questions on the overall viability of all the cells within 3D volume and on choosing the appropriate, continuous, and non-destructive viability assay enabling for a single-cell analysis. In this review, we look at cell viability and cell death modalities with attention to the intrinsic features of such 3D models as spheroids, organoids, and bioprints. Furthermore, we look at emerging and promising methodologies, which can help define and understand the balance between cell viability and death in dynamic and complex 3D environments. We conclude that the recent innovations in biofabrication, biosensor probe development, and fluorescence microscopy can help answer these questions.


Assuntos
Organoides , Esferoides Celulares , Sobrevivência Celular , Morte Celular
2.
Nat Methods ; 18(11): 1294-1303, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34725485

RESUMO

Spheroids are three-dimensional cellular models with widespread basic and translational application across academia and industry. However, methodological transparency and guidelines for spheroid research have not yet been established. The MISpheroID Consortium developed a crowdsourcing knowledgebase that assembles the experimental parameters of 3,058 published spheroid-related experiments. Interrogation of this knowledgebase identified heterogeneity in the methodological setup of spheroids. Empirical evaluation and interlaboratory validation of selected variations in spheroid methodology revealed diverse impacts on spheroid metrics. To facilitate interpretation, stimulate transparency and increase awareness, the Consortium defines the MISpheroID string, a minimum set of experimental parameters required to report spheroid research. Thus, MISpheroID combines a valuable resource and a tool for three-dimensional cellular models to mine experimental parameters and to improve reproducibility.


Assuntos
Biomarcadores Tumorais/genética , Proliferação de Células , Bases de Conhecimento , Neoplasias/patologia , Software , Esferoides Celulares/patologia , Microambiente Tumoral , Técnicas de Cultura de Células/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/classificação , Neoplasias/metabolismo , RNA-Seq , Reprodutibilidade dos Testes , Esferoides Celulares/imunologia , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas
3.
J Cell Sci ; 134(9): 1-17, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33961054

RESUMO

A major focus of current biological studies is to fill the knowledge gaps between cell, tissue and organism scales. To this end, a wide array of contemporary optical analytical tools enable multiparameter quantitative imaging of live and fixed cells, three-dimensional (3D) systems, tissues, organs and organisms in the context of their complex spatiotemporal biological and molecular features. In particular, the modalities of luminescence lifetime imaging, comprising fluorescence lifetime imaging (FLI) and phosphorescence lifetime imaging microscopy (PLIM), in synergy with Förster resonance energy transfer (FRET) assays, provide a wealth of information. On the application side, the luminescence lifetime of endogenous molecules inside cells and tissues, overexpressed fluorescent protein fusion biosensor constructs or probes delivered externally provide molecular insights at multiple scales into protein-protein interaction networks, cellular metabolism, dynamics of molecular oxygen and hypoxia, physiologically important ions, and other physical and physiological parameters. Luminescence lifetime imaging offers a unique window into the physiological and structural environment of cells and tissues, enabling a new level of functional and molecular analysis in addition to providing 3D spatially resolved and longitudinal measurements that can range from microscopic to macroscopic scale. We provide an overview of luminescence lifetime imaging and summarize key biological applications from cells and tissues to organisms.


Assuntos
Técnicas Biossensoriais , Luminescência , Transferência Ressonante de Energia de Fluorescência , Imagem Óptica , Oxigênio
4.
Cytometry A ; 97(5): 471-482, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31486581

RESUMO

Monitoring of cell metabolism represents an important application area for fluorescence lifetime imaging microscopy (FLIM). In particular, assessment of mitochondrial membrane potential (MMP) in complex three-dimensional multicellular in vitro, ex vivo, and in vivo models would enable improved segmentation and functional discrimination of cell types, directly report on the mitochondrial function and complement the quenched-phosphorescence detection of cellular O2 and two-photon excited FLIM of endogenous NAD(P)H. Here, we report the green and orange-emitting fluorescent dyes SYTO and tetramethylrhodamine methyl ester (TMRM) as potential FLIM probes for MMP. In addition to nuclear, SYTO 16 and 24 dyes also display mitochondrial accumulation. FLIM with the culture of human colon cancer HCT116 cells allowed observation of the heterogeneity of mitochondrial polarization during the cell cycle progression. The dyes also demonstrated good performance with 3D cultures of Lgr5-GFP mouse intestinal organoids, providing efficient and quick cell staining and compatibility with two-photon excitation. Multiplexed imaging of Lgr5-GFP, proliferating cells (Hoechst 33342-aided FLIM), and TMRM-FLIM allowed us to identify the population of metabolically active cells in stem cell niche. TMRM-FLIM enabled to visualize the differences in membrane potential between Lgr5-positive and other proliferating and differentiated cell types. Altogether, SYTO 24 and TMRM dyes represent promising markers for advanced FLIM-based studies of cell bioenergetics with complex 3D and in vivo models. © 2019 International Society for Advancement of Cytometry.


Assuntos
Corantes Fluorescentes , Organoides , Animais , Corantes Fluorescentes/metabolismo , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Microscopia de Fluorescência , Nicho de Células-Tronco
5.
J Biol Chem ; 293(12): 4434-4444, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29386352

RESUMO

Although stop codon readthrough is used extensively by viruses to expand their gene expression, verified instances of mammalian readthrough have only recently been uncovered by systems biology and comparative genomics approaches. Previously, our analysis of conserved protein coding signatures that extend beyond annotated stop codons predicted stop codon readthrough of several mammalian genes, all of which have been validated experimentally. Four mRNAs display highly efficient stop codon readthrough, and these mRNAs have a UGA stop codon immediately followed by CUAG (UGA_CUAG) that is conserved throughout vertebrates. Extending on the identification of this readthrough motif, we here investigated stop codon readthrough, using tissue culture reporter assays, for all previously untested human genes containing UGA_CUAG. The readthrough efficiency of the annotated stop codon for the sequence encoding vitamin D receptor (VDR) was 6.7%. It was the highest of those tested but all showed notable levels of readthrough. The VDR is a member of the nuclear receptor superfamily of ligand-inducible transcription factors, and it binds its major ligand, calcitriol, via its C-terminal ligand-binding domain. Readthrough of the annotated VDR mRNA results in a 67 amino acid-long C-terminal extension that generates a VDR proteoform named VDRx. VDRx may form homodimers and heterodimers with VDR but, compared with VDR, VDRx displayed a reduced transcriptional response to calcitriol even in the presence of its partner retinoid X receptor.


Assuntos
Calcitriol/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Códon de Terminação , Regulação da Expressão Gênica/efeitos dos fármacos , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Receptores de Calcitriol/genética , Células HEK293 , Células HeLa , Humanos , Fases de Leitura Aberta , RNA Mensageiro/genética , Receptores de Calcitriol/biossíntese
6.
Anal Chem ; 91(1): 808-816, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30518209

RESUMO

Novel fluorescent diazaoxatriangulenium (DAOTA) pH indicators for lifetime-based self-referenced pH sensing are reported. The DAOTA dyes were decorated with phenolic-receptor groups inducing fluorescence quenching via a photoinduced-electron-transfer mechanism. Electron-withdrawing chlorine substituents ensure response in the most relevant pH range (apparent p Ka' values of ∼5 and 7.5 for the p, p-dichlorophenol- and p-chlorophenol-substituted dyes, respectively). The dyes feature long fluorescence lifetimes (17-20 ns), high quantum yields (∼60%), and high photostabilities. Planar optodes are prepared upon immobilization of the dyes into polyurethane hydrogel D4. Apart from the response in the fluorescence intensity, the optodes show pH-dependent lifetime behavior, which makes them suitable for studying 2D pH distributions with the help of fluorescence-lifetime-imaging techniques. The lifetime response is particularly pronounced for the sensors with high dye concentrations (0.5-1 wt % with respect to the polymer) and is attributed to the efficient homo-FRET mechanism.

7.
Xenotransplantation ; 26(3): e12506, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30815940

RESUMO

Decellularized bovine pericardium (DBP)-based biomeshes are the gold standard in reconstructive surgery. In order to prolong their stability after the transplantation, various chemical cross-linking strategies are employed. However, structural and functional properties of the biomeshes differ in dependence on the cross-linker used. Here, we performed a bottom-up study of structural and functional alterations of DBP-based biomeshes following cross-linking with hexamethylene diisocyanate (HMDC), ethylene glycol diglycidyl ether (EGDE), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and genipin. The in vitro cytotoxicity tests supported their clinical applicability. Their structural differences (eg roughness, fibre thickness, pore morphology) were evaluated using the two-photon confocal laser scanning, atomic force, scanning electron and polarized light microscopies. HMDC and EDC samples appeared to be the roughest. Complex mechanical trials indicated the tendency to reduced Young's Modulus and mechanical anisotropy values of DBP upon cross-linking. The lowest mechanical anisotropy was found in EDC and genipin sample groups. In vitro collagenase susceptibility was the highest for EDC samples and the lowest for EGDE samples. The comparative analysis of the results allowed us to recognize the strengths and weaknesses of each cross-linker in relation to a particular clinical application.


Assuntos
Teste de Materiais , Pericárdio/cirurgia , Engenharia Tecidual , Transplante Heterólogo , Animais , Bovinos , Reagentes de Ligações Cruzadas , Iridoides/farmacologia , Teste de Materiais/métodos , Engenharia Tecidual/métodos
8.
Cell Mol Life Sci ; 75(16): 2963-2980, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29761206

RESUMO

Molecular oxygen (O2) is a key player in cell mitochondrial function, redox balance and oxidative stress, normal tissue function and many common disease states. Various chemical, physical and biological methods have been proposed for measurement, real-time monitoring and imaging of O2 concentration, state of decreased O2 (hypoxia) and related parameters in cells and tissue. Here, we review the established and emerging optical microscopy techniques allowing to visualize O2 levels in cells and tissue samples, mostly under in vitro and ex vivo, but also under in vivo settings. Particular examples include fluorescent hypoxia stains, fluorescent protein reporter systems, phosphorescent probes and nanosensors of different types. These techniques allow high-resolution mapping of O2 gradients in live or post-mortem tissue, in 2D or 3D, qualitatively or quantitatively. They enable control and monitoring of oxygenation conditions and their correlation with other biomarkers of cell and tissue function. Comparison of these techniques and corresponding imaging setups, their analytical capabilities and typical applications are given.


Assuntos
Hipóxia , Oxigênio/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Nanoestruturas/química , Imagem Óptica , Oxigênio/química
9.
Adv Funct Mater ; 28(9)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30271316

RESUMO

The imaging of real-time fluxes of K+ ions in live cell with high dynamic range (5-150 mM) is of paramount importance for neuroscience and physiology of the gastrointestinal tract, kidney and other tissues. In particular, the research on high-performance deep-red fluorescent nanoparticle-based biosensors is highly anticipated. We found that BODIPY-based FI3 K+-sensitive fluoroionophore encapsulated in cationic polymer RL100 nanoparticles displays unusually strong efficiency in staining of broad spectrum of cell models, such as primary neurons and intestinal organoids. Using comparison of brightness, photostability and fluorescence lifetime imaging microscopy (FLIM) we confirmed that FI3 nanoparticles display distinctively superior intracellular staining compared to the free dye. We evaluated FI3 nanoparticles in real-time live cell imaging and found that it is highly useful for monitoring intra- and extracellular K+ dynamics in cultured neurons. Proof-of-concept in vivo brain imaging confirmed applicability of the biosensor for visualization of epileptic seizures. Collectively, this data makes fluoroionophore FI3 a versatile cross-platform fluorescent biosensor, broadly compatible with diverse experimental models and that crown ether-based polymer nanoparticles can provide a new venue for design of efficient fluorescent probes.

10.
Biochem J ; 473(16): 2507-18, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27316461

RESUMO

The mammalian SPCA1 and SPCA2 ATPases localize in membranes of the secretory pathway and transport ions of Ca(2+) and Mn(2+) The role of tissue-specific SPCA2 isoform, highly expressed in lungs, mammary gland and gastrointestinal tract, is poorly understood. To elucidate the function of SPCA2, we studied human colon cancer HCT116 cells, grown under ambient and decreased O2 levels. We found that in contrast with other Ca(2+)-ATPase isoforms the expression of SPCA2 was up-regulated under hypoxia (3% O2), in both adherent (2D) and spheroid (3D) cultures. In spheroids, experiencing lowest O2 levels (30-50 µM, measured by phosphorescence lifetime imaging microscopy), we observed lower staining with reactive oxygen species (ROS)-specific fluorescent probe, which correlated with increased SPCA2. However, SPCA2 expression was up-regulated in cells exposed to reactive oxygen and nitrogen species donors, and when grown at higher density. We noticed that the culture exposed to hypoxia showed overall increase in S phase-positive cells and hypothesized that SPCA2 up-regulation under hypoxia can be linked to Mn(2+)-dependent cell cycle arrest. Consequently, we found that SPCA2-transfected cells display a higher number of cells entering S phase. Altogether, our results point at the important role of SPCA2 in regulation of cell cycle in cancer cells.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Neoplasias do Colo/metabolismo , Manganês/metabolismo , Oxigênio/metabolismo , Adesão Celular , Hipóxia Celular , Neoplasias do Colo/patologia , Citosol/metabolismo , Células HCT116 , Humanos , Transporte de Íons , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Esferoides Celulares
11.
Adv Exp Med Biol ; 1035: 49-67, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29080130

RESUMO

In recent years, the advances in tissue engineering and regenerative medicine have resulted in introduction of novel 3D tissue models, materials and methods to the regular practice of cell biologists, material scientists and specialists from related areas. 3D tissue models allow mimicking in vivo cell and tissue organization. However, the efficient work in three dimensions has significant challenges, such as compatibility with conventional cell biology methods, live cell imaging and quantification readouts. Here, we briefly discuss the applicability of 3D tissue models to different live cell microscopy modalities and the available range of fluo- and phosphorescent probes and sensors allowing for multi-parametric imaging.


Assuntos
Corantes Fluorescentes/química , Imageamento Tridimensional/métodos , Sondas Moleculares/química , Imagem Óptica/métodos , Organoides/ultraestrutura , Alicerces Teciduais , Técnicas de Cultura de Células , Rastreamento de Células/instrumentação , Rastreamento de Células/métodos , Humanos , Imageamento Tridimensional/instrumentação , Dispositivos Lab-On-A-Chip , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Imagem Óptica/instrumentação , Organoides/metabolismo , Medicina Regenerativa/métodos , Engenharia Tecidual
12.
Adv Exp Med Biol ; 1035: 85-103, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29080132

RESUMO

Dynamics of oxygenation of tissue and stem cell niches are important for understanding physiological function of the intestine in normal and diseased states. Only a few techniques allow live visualization of tissue hypoxia at cellular level and in three dimensions. We describe an optimized protocol, which uses cell-penetrating O2-sensitive probe, Pt-Glc and phosphorescence lifetime imaging microscopy (PLIM), to analyze O2 distribution in mouse intestinal organoids. Unlike the other indirect and end-point hypoxia stains, or point measurements with microelectrodes, this method provides high-resolution real-time visualization of O2 in organoids. Multiplexing with conventional fluorescent live cell imaging probes such as the Hoechst 33342-based FLIM assay of cell proliferation, and immunofluorescence staining of endogenous proteins, allows analysis of key physiologic parameters under O2 control in organoids. The protocol is useful for gastroenterology and physiology of intestinal tissue, hypoxia research, regenerative medicine, studying host-microbiota interactions and bioenergetics.


Assuntos
Células Epiteliais/ultraestrutura , Imunofluorescência/métodos , Hipóxia/metabolismo , Imagem Óptica/métodos , Organoides/ultraestrutura , Oxigênio/análise , Animais , Ciclo Celular/genética , Proliferação de Células , Respiração Celular , Células Epiteliais/metabolismo , Imunofluorescência/instrumentação , Mucosa Intestinal/metabolismo , Intestinos/citologia , Substâncias Luminescentes/química , Camundongos , Imagem Óptica/instrumentação , Organoides/metabolismo , Oxigênio/metabolismo , Platina/química , Porfirinas/química , Coloração e Rotulagem/métodos
13.
Adv Exp Med Biol ; 1035: 71-81, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29080131

RESUMO

Polymeric, ceramic and hybrid material-based three-dimensional (3D) scaffold or matrix structures are important for successful tissue engineering. While the number of approaches utilizing the use of cell-based scaffold and matrix structures is constantly growing, it is essential to provide a framework of their typical preparation and evaluation for tissue engineering. This chapter describes the fabrication of 3D scaffolds using two-photon polymerization, decellularization and cell encapsulation methods and easy-to-use protocols allowing assessing the cell morphology, cytotoxicity and viability in these scaffolds.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Células-Tronco/ultraestrutura , Engenharia Tecidual/métodos , Alicerces Teciduais , Osso e Ossos/metabolismo , Osso e Ossos/ultraestrutura , Cartilagem Articular/metabolismo , Cartilagem Articular/ultraestrutura , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas , Quitosana/química , Quitosana/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Adesivo Tecidual de Fibrina/química , Humanos , Imageamento Tridimensional/instrumentação , Ácido Láctico/química , Ácido Láctico/farmacologia , Microscopia Confocal/instrumentação , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacologia , Poli-Hidroxietil Metacrilato/química , Poli-Hidroxietil Metacrilato/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
14.
Anal Chem ; 88(21): 10566-10572, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696826

RESUMO

Live cells function within narrow limits of physiological temperature (T) and O2 and metabolite concentrations. We have designed a cell-permeable T-sensitive fluorescence lifetime-based nanoprobe based on lipophilic sulforhodamine, which stains 2D and 3D cell models, shows cytoplasmic localization, and has a robust response to T (∼0.037 ns/K). Subsequently, we evaluated the probe and fluorescence lifetime imaging microscopy (FLIM) technique for combined imaging of T and O2 gradients in metabolically active cells. We found that in adherent 2D culture of HCT116 cells intracellular T and O2 are close to ambient values. However, in 3D spheroid structures having size >200 µm, T and O2 gradients become pronounced. These microgradients can be enhanced by treatment with mitochondrial uncouplers or dissipated by drug-induced disaggregation of the spheroids. Thus, we demonstrate the existence of local microgradients of T in 3D cell models and utility of combined imaging of O2 and T.


Assuntos
Nanopartículas/química , Nanotecnologia , Rodaminas/química , Termômetros , Células HCT116 , Humanos , Microscopia de Fluorescência/métodos , Oxigênio/metabolismo , Esferoides Celulares/metabolismo , Temperatura
15.
Bioconjug Chem ; 27(2): 439-45, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26704593

RESUMO

Specific and reversible metallochelate coupling via nitrilotriacetate (NTA) moiety is widely used for immobilization, purification, and labeling of oligo(histidine)-tagged proteins. Here, we evaluated this strategy to label various peptides and proteins with phosphorescent Pt-porphyrin derivatives bearing NTA group(s). Zn(2+) complexes were shown to have minimal effect on the photophysics of the porphyrin moiety, allowing quenched-phosphorescence sensing of O2. We complexed the PtTFPP-NTA conjugate with His-containing peptide that can facilitate intracellular loading, and observed efficient accumulation and phosphorescent staining of MEF cells. The more hydrophilic PtCP-NTA conjugate was also seen to form stable complexes with larger polypeptide constructs based on fluorescent proteins, and with subunits of protein nanoparticles, which retained their ability to self-assemble. Testing in phosphorescence lifetime based O2 sensing assays on a fluorescence reader and PLIM microscope revealed that phosphorescent metallochelate complexes perform similarly to the existing O2 probes. Thus, metallochelate coupling allows simple preparation of different types of biomaterials labeled with phosphorescent Pt-porphyrins.


Assuntos
Substâncias Luminescentes/química , Metaloporfirinas/química , Nanopartículas/química , Oxigênio/análise , Peptídeos/química , Platina/química , Proteínas/química , Animais , Técnicas Biossensoriais/métodos , Linhagem Celular , Histidina/química , Medições Luminescentes/métodos , Camundongos , Ácido Nitrilotriacético/química , Coloração e Rotulagem/métodos
16.
Cell Mol Life Sci ; 72(2): 367-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25006059

RESUMO

Cell-permeable phosphorescent probes enable the study of cell and tissue oxygenation, bioenergetics, metabolism, and pathological states such as stroke and hypoxia. A number of such probes have been described in recent years, the majority consisting of cationic small molecule and nanoparticle structures. While these probes continue to advance, adequate staining for the study of certain cell types using live imaging techniques remains elusive; this is particularly true for neural cells. Here we introduce novel probes for the analysis of neural cells and tissues: negatively charged poly(methyl methacrylate-co-methacrylic acid)-based nanoparticles impregnated with a phosphorescent Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP) dye (this form is referred to as PA1), and with an additional reference/antennae dye poly(9,9-diheptylfluorene-alt-9,9-di-p-tolyl-9H-fluorene) (this form is referred to as PA2). PA1 and PA2 are internalised by endocytosis, result in efficient staining in primary neurons, astrocytes, and PC12 cells and multi-cellular aggregates, and allow for the monitoring of local O(2) levels on a time-resolved fluorescence plate reader and PLIM microscope. PA2 also efficiently stains rat brain slices and permits detailed O(2) imaging experiments using both one and two-photon intensity-based modes and PLIM modes. Multiplexed analysis of embryonic rat brain slices reveals age-dependent staining patterns for PA2 and a highly heterogeneous distribution of O(2) in tissues, which we relate to the localisation of specific progenitor cell populations. Overall, these anionic probes are useful for sensing O(2) levels in various cells and tissues, particularly in neural cells, and facilitate high-resolution imaging of O(2) in 3D tissue models.


Assuntos
Medições Luminescentes/métodos , Imagem Molecular/métodos , Sondas Moleculares/metabolismo , Nanopartículas/metabolismo , Neurônios/química , Oxigênio/análise , Fatores Etários , Animais , Sondas Moleculares/química , Estrutura Molecular , Nanopartículas/química , Ratos
17.
Biochim Biophys Acta ; 1837(1): 51-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23891695

RESUMO

Active glycolysis and glutaminolysis provide bioenergetic stability of cancer cells in physiological conditions. Under hypoxia, metabolic and mitochondrial disorders, or pharmacological treatment, a deficit of key metabolic substrates may become life-threatening to cancer cells. We analysed the effects of mitochondrial uncoupling by FCCP on the respiration of cells fed by different combinations of Glc, Gal, Gln and Pyr. In cancer PC12 and HCT116 cells, a large increase in O2 consumption rate (OCR) upon uncoupling was only seen when Gln was combined with either Glc or Pyr. Inhibition of glutaminolysis with BPTES abolished this effect. Despite the key role of Gln, addition of FCCP inhibited respiration and induced apoptosis in cells supplied with Gln alone or Gal/Gln. For all substrate combinations, amplitude of respiratory responses to FCCP did not correlate with Akt, Erk and AMPK phosphorylation, cellular ATP, and resting OCR, mitochondrial Ca(2+) or membrane potential. However, we propose that proton motive force could modulate respiratory response to FCCP by regulating mitochondrial transport of Gln and Pyr, which decreases upon mitochondrial depolarisation. As a result, an increase in respiration upon uncoupling is abolished in cells, deprived of Gln or Pyr (Glc). Unlike PC12 or HCT116 cells, mouse embryonic fibroblasts were capable of generating pronounced response to FCCP when deprived of Gln, thus exhibiting lower dependence on glutaminolysis. Overall, the differential regulation of the respiratory response to FCCP by metabolic environment suggests that mitochondrial uncoupling has a potential for substrate-specific inhibition of cell function, and can be explored for selective cancer treatment.


Assuntos
Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Consumo de Oxigênio/fisiologia , Animais , Apoptose/genética , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/química , Respiração Celular/fisiologia , Galactose/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Glicólise/genética , Células HCT116 , Humanos , Camundongos , Neoplasias/patologia , Fosforilação Oxidativa , Células PC12 , Ácido Pirúvico/metabolismo , Ratos , Especificidade por Substrato
18.
Biochim Biophys Acta ; 1830(6): 3553-69, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23462283

RESUMO

BACKGROUND: Along with other regulators of cell metabolism, hypoxia-inducible factors HIF-1 and HIF-2 differentially regulate cell adaptation to hypoxia. Switches in HIF-1/HIF-2 signaling in chronic hypoxia have not been fully investigated. METHODS: Proliferation, viability, apoptosis, neuronal and bioenergetic markers, mitochondrial function, respiration, glycolysis, HIF signalling, responses to O2 and glucose deprivation (OGD) were examined using tumor PC12 and SH-SY5Y cells continuously grown at 3% O2. RESULTS: Hypoxic PC12 cells (H-cells) exhibit reduced proliferation and histone H4 acetylation, NGF-independent differentiation, activation of AMPK, inhibition of Akt, altered mitochondria and response to NGF. Cellular cytochrome c is increased with no effect on apoptosis. Reduction in respiration has minor effect on cellular ATP which is maintained through activated uptake (GLUT1) and utilization (HK2, PFK2) of glucose. H-cells exhibit resistance to OGD linked to increased glycogen stores. HIF-2alpha protein is decreased without changes in mRNA. Unlike HIF-1alpha, HIF-2alpha is not stabilized pharmacologically or by O2 deprivation. Capacity for HIF-2alpha stabilization is partly restored when H-cells are cultured at normoxia. In low-respiring SH-SY5Y cells cultured under the same conditions HIF-2alpha stabilization and energy budget are not affected. CONCLUSIONS: In chronically hypoxic PC12 cells glycolytic energy budget, increased energy preservation and low susceptibility to OGD are observed. HIF-2alpha no longer orchestrates adaptive responses to anoxia. GENERAL SIGNIFICANCE: Demonstrated switch in HIF-1/HIF-2 signaling upon chronic hypoxia can facilitate cell survival in energy crisis, by regulating balance between energy saving and decrease in proliferation, on one hand and active cell growth and tumor expansion, on the other.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Glicólise/fisiologia , Transdução de Sinais/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Hipóxia Celular/fisiologia , Glicólise/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator de Crescimento Neural/farmacologia , Oxigênio/metabolismo , Células PC12 , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
19.
J Cell Biochem ; 115(11): 1967-73, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24913909

RESUMO

MSL1 protein regulates global histone H4 acetylation at residue K16 in stem and cancer cells, through interaction with KAT8. The functional significance of mammalian MSL1 isoforms, involved in various protein interactions, is poorly understood. We report the identification of a novel nuclear localization signal (NLS), common to all MSL1 isoforms, in addition to previously known bipartite NLS, located in domain PEHE. Isoforms having both NLS localize to sub-nuclear foci where they can target co-chaperone protein TTC4. However, all MSL1 isoforms also have ability to affect H4K16 acetylation. Thus, presence of two NLS in MSL1 protein can mediate activity of KAT8 in vivo.


Assuntos
Núcleo Celular/metabolismo , Histona Acetiltransferases/metabolismo , Sinais de Localização Nuclear/genética , Proteínas Supressoras de Tumor/metabolismo , Acetilação , Animais , Células HCT116 , Células HEK293 , Células HeLa , Histona Acetiltransferases/genética , Histonas/metabolismo , Humanos , Camundongos , Células NIH 3T3 , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Supressoras de Tumor/genética
20.
Chem Soc Rev ; 42(22): 8700-32, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23775387

RESUMO

Recent developments in the area of biological detection by optical sensing of molecular oxygen (O2) are reviewed, with particular emphasis on the quenched-phosphorescence O2 sensing technique. Following a brief introduction to the main principles, materials and formats of sensor technology, the main groups of applications targeted to biological detection using an O2 transducer are described. These groups include: enzymatic assays; analysis of respiration of mammalian and microbial cells, small organisms and plants; food and microbial safety; monitoring of oxygenation in cell cultures, 3D models of live tissue, bioreactors and fluidic chips; ex vivo and in vivo O2 measurements; trace O2 analysis. For these systems, which enable a range of new bioanalytical tasks with different samples and models in a minimally invasive, contact-less manner, with high sensitivity, flexibility and imaging capabilities in 2D and 3D, relevant practical examples are presented and their merits and limitations discussed. An outlook of future scientific and technological developments in the field is also provided.


Assuntos
Técnicas Biossensoriais , Imagem Óptica , Oxigênio/análise , Animais , Sobrevivência Celular , Células Cultivadas , Técnicas Citológicas , Humanos , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA