Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 9(4): 502-15, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17301936

RESUMO

The origin and maintenance of a plastidic tandem repeat next to the TRNF (UUC) gene were analyzed in the genus BOECHERA in a phylogenetic context and were compared to published analogous examples that emerged in parallel in the Asteraceae and Juncaceae, respectively. Although we identified some features common to these taxonomic groups with respect to structure and origin of the region, obvious differences were encountered, which argue against a specific mechanism or evolutionary principle underlying the parallel origin and maintenance of the TRNF-tandem repeats in those families. In contrast to the situation in the Asteraceae, no reciprocal recombinant repeat types have been observed in the Brassicaceae. Forty copy types, classified into three groups, were isolated from 103 chloroplast haplotypes of BOECHERA and it was demonstrated that they are composed of four subregions of various origins. We discuss various mutation mechanisms such as DNA replication slippage, and inter- and intrachromosomal recombination which were reported to mediate variation in copy numbers and other types of observed sequence length polymorphism. It is shown that the observed molecular structure of the tandem repeat region did not fully fit the particular patterns expected under a scenario of evolution including any of the known mechanisms. Nevertheless, it appeared that intermolecular unequal crossing-over is most likely the driving force in the evolution of this tandem repeat. However, it remains to be explained, why no reciprocal recombinant copy types have been observed. The reconstructed phylogenetic relationships among copies reflected different evolutionary scenarios as follows: (1) A single and ancient origin of copies pre-dates the radiation of BOECHERA. (2) Parallel expansion and shortening of the tandem repeat within different BOECHERA lineages. (3) Conservation of the first copy, as it was the only one present in all chloroplast haplotypes.


Assuntos
Brassicaceae/genética , Evolução Molecular , Plastídeos/genética , Pseudogenes/genética , Sequência de Bases , Duplicação Gênica , Genes de Plantas , Variação Genética , Dados de Sequência Molecular , América do Norte
2.
Cytogenet Genome Res ; 109(1-3): 283-92, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15753588

RESUMO

The Boechera holboellii complex comprises B. holboellii and B. drummondii, both of which can reproduce through sex or apomixis. Sexuality is associated with diploid individuals, whereas apomictic individuals are diploid or triploid and may additionally have B chromosomes. Using flow cytometry and karyotype analysis, we have shown that B chromosomes (a) occur in both diploid and triploid apomictic B. holboellii, (b) may occur in triploid B. drummondii, and (c) are dispensable for the plant. Both diploid and triploid karyotypes are found in multiple chloroplast haplotypes of both species, suggesting that triploid forms have originated multiple times during the evolution of this complex. B chromosome carriers are found in geographically and genetically distinct populations, but it is unknown whether the extra chromosomes are shared by common descent (single origin) or have originated via introgressive hybridization and repeated transitions from diploidy to triploidy. Diploid plants containing the Bs reproduce apomictically, suggesting that the supernumerary elements are associated with apomixis. Finally, our analyses of pollen size and viability suggest that irregular chromosome segregation in some triploid lineages may lead to the generation of diploid individuals which carry the B chromosomes.


Assuntos
Brassicaceae/classificação , Brassicaceae/genética , Cromossomos de Plantas/genética , Poliploidia , Mapeamento Cromossômico , Europa (Continente) , Evolução Molecular , Genética Populacional , Geografia , Ploidias , Pólen/genética
3.
Mol Ecol ; 13(2): 349-70, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14717892

RESUMO

Arabis drummondii, A. holboellii and their hybrid A. x divaricarpa are widespread perennials of open habitats in North America. A phylogenetic analysis based on noncoding chloroplast DNA sequences (trnL intron and trnL/F intergenic spacer) resolved A. drummondii as a monophyletic taxon, but found A. holboellii to bear chloroplast haplotypes from highly diverged evolutionary lineages. This raised the question of a possible polyphyletic origin of A. holboellii. Arabis x divaricarpa was found to be of recent and polytopic origin, a result consistent with its presumed hybrid origin. One hundred and three chloroplast haplotypes were detected within 719 Arabis accessions investigated. The majority of chloroplast-types were estimated to have arisen prior to the Wisconsin glaciation. Phylogeographical analysis using nested clade analysis, suggested for A. holboellii (i). past fragmentation events, partitioning genetic variation in several instances between the Sierra Nevada, the Southern Rocky Mountains and the Colorado Plateau on the one hand and the Central to Northern Rockies of the United States and adjacent Cascades on the other; and for both parental species (ii). recolonization of major areas formerly covered by the Wisconsin glaciation by three haplotypes; and (iii). restricted gene flow indicating isolation by distance in areas south of the last glacial maximum. Arabis x divaricarpa is closely codistributed with its parental species and resampled their haplotypes. The highest genetic diversity was found in the Rocky Mountains from Idaho and Montana south to Utah and Colorado. This area was further hypothesized to have played a major role in the origin of both parental species and probably represented an important glacial refugium. However, evidence for glacial refugia was also found in arctic and boreal regions of Alaska and near the Great Lakes. In comparison to nuclear ribosomal internal transcribed spacer data, chloroplast DNA divergence was very high and evidently predated the origin of A. drummondii and possibly A. holboellii. Divergence of major chloroplast lineages dates back to the middle of the Pleistocene at least. Extensive hybridization is the most likely evolutionary factor working on A. holboellii to explain the revealed discrepancy in nuclear DNA and chloroplast DNA diversification.


Assuntos
Arabis/genética , Variação Genética , Hibridização Genética , Filogenia , Sequência de Bases , Análise por Conglomerados , Primers do DNA , DNA de Cloroplastos/genética , Geografia , Haplótipos/genética , Dados de Sequência Molecular , América do Norte , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA