Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 8(6): e1002537, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685390

RESUMO

Dihydrodipicolinate synthase (DHDPS) is an essential enzyme involved in the lysine biosynthesis pathway. DHDPS from E. coli is a homotetramer consisting of a 'dimer of dimers', with the catalytic residues found at the tight-dimer interface. Crystallographic and biophysical evidence suggest that the dimers associate to stabilise the active site configuration, and mutation of a central dimer-dimer interface residue destabilises the tetramer, thus increasing the flexibility and reducing catalytic efficiency and substrate specificity. This has led to the hypothesis that the tetramer evolved to optimise the dynamics within the tight-dimer. In order to gain insights into DHDPS flexibility and its relationship to quaternary structure and function, we performed comparative Molecular Dynamics simulation studies of native tetrameric and dimeric forms of DHDPS from E. coli and also the native dimeric form from methicillin-resistant Staphylococcus aureus (MRSA). These reveal a striking contrast between the dynamics of tetrameric and dimeric forms. Whereas the E. coli DHDPS tetramer is relatively rigid, both the E. coli and MRSA DHDPS dimers display high flexibility, resulting in monomer reorientation within the dimer and increased flexibility at the tight-dimer interface. The mutant E. coli DHDPS dimer exhibits disorder within its active site with deformation of critical catalytic residues and removal of key hydrogen bonds that render it inactive, whereas the similarly flexible MRSA DHDPS dimer maintains its catalytic geometry and is thus fully functional. Our data support the hypothesis that in both bacterial species optimal activity is achieved by fine tuning protein dynamics in different ways: E. coli DHDPS buttresses together two dimers, whereas MRSA dampens the motion using an extended tight-dimer interface.


Assuntos
Hidroliases/química , Hidroliases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Biologia Computacional , Simulação por Computador , Cristalografia por Raios X , Dimerização , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroliases/genética , Staphylococcus aureus Resistente à Meticilina/enzimologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Ácido Pirúvico/metabolismo , Especificidade da Espécie , Especificidade por Substrato
2.
Biometals ; 24(3): 477-87, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21258844

RESUMO

The Menkes (ATP7A) P(1B)-type ATPase is a transmembrane copper-translocating protein. It contains six similar high-affinity metal-binding domains (MBDs) in the N-terminal cytoplasmic tail that are important for sensing intracellular copper and regulating ATPase function through the transfer of copper between domains. Molecular characterization of copper-binding and transfer is predominantly dependent on NMR structures derived from E. coli expression systems. A limitation of these models is the exclusion of post-translational modifications. We have previously shown that the third copper-binding domain, MBD3, uniquely contains two phosphorylated residues: Thr-327, which is phosphorylated only in the presence of elevated copper; and Ser-339, which is constitutively phosphorylated independent of copper levels. Here, using molecular dynamic simulations, we have incorporated these phosphorylated residues into a model based on the NMR structures of MBD3. Our data suggests that constitutively phosphorylated Ser-339, which is in a loop facing the copper-binding site, may facilitate the copper transfer process by exposing the CxxC copper-binding region of MBD3. Copper-induced phosphorylation of Thr327 is predicted to stabilize this change in conformation. This offers new molecular insights into how cell signaling (phosphorylation) can affect MBD structure and dynamics and how this may in turn affect copper-binding and thus copper-translocation functions of ATP7A.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Conformação Proteica , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte de Cátions/genética , Cobre/química , ATPases Transportadoras de Cobre , Estabilidade Enzimática , Síndrome dos Cabelos Torcidos/enzimologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Alinhamento de Sequência , Eletricidade Estática
3.
Biochim Biophys Acta ; 1794(10): 1510-6, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19595801

RESUMO

Bacillus anthracis is a Gram-positive spore-forming bacterium that is the causative agent of anthrax disease. The use of anthrax as a bioweapon has increased pressure for the development of an effective treatment. Dihydrodipicolinate synthase (DHDPS) catalyses the first committed step in the biosynthetic pathway yielding two essential bacterial metabolites, meso-diaminopimelate (DAP) and (S)-lysine. DHDPS is therefore a potential antibiotic target, as microbes require either lysine or DAP as a component of the cell wall. This paper is the first biochemical description of DHDPS from B. anthracis. Enzyme kinetic analyses, isothermal titration calorimetry (ITC), mass spectrometry and differential scanning fluorimetry (DSF) were used to characterise B. anthracis DHDPS and compare it with the well characterised Escherichia coli enzyme. B. anthracis DHDPS exhibited different kinetic behaviour compared with E. coli DHDPS, in particular, substrate inhibition by (S)-aspartate semi-aldehyde was observed for the B. anthracis enzyme (K(si(ASA))=5.4+/-0.5 mM), but not for the E. coli enzyme. As predicted from a comparison of the X-ray crystal structures, the B. anthracis enzyme was not inhibited by lysine. The B. anthracis enzyme was thermally stabilised by the first substrate, pyruvate, to a greater extent than its E. coli counterpart, but has a weaker affinity for pyruvate based on enzyme kinetics and ITC studies. This characterisation will provide useful information for the design of inhibitors as new antibiotics targeting B. anthracis.


Assuntos
Bacillus anthracis/enzimologia , Hidroliases/química , Hidroliases/metabolismo , Regulação Alostérica , Animais , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/genética , Bacillus anthracis/patogenicidade , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Retroalimentação Fisiológica , Genes Bacterianos , Humanos , Hidroliases/antagonistas & inibidores , Hidroliases/genética , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligantes , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA