Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Bioinformatics ; 39(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010501

RESUMO

SUMMARY: The current widespread adoption of next-generation sequencing (NGS) in all branches of basic research and clinical genetics fields means that users with highly variable informatics skills, computing facilities and application purposes need to process, analyse, and interpret NGS data. In this landscape, versatility, scalability, and user-friendliness are key characteristics for an NGS analysis software. We developed DNAscan2, a highly flexible, end-to-end pipeline for the analysis of NGS data, which (i) can be used for the detection of multiple variant types, including SNVs, small indels, transposable elements, short tandem repeats, and other large structural variants; (ii) covers all standard steps of NGS analysis, from quality control of raw data and genome alignment to variant calling, annotation, and generation of reports for the interpretation and prioritization of results; (iii) is highly adaptable as it can be deployed and run via either a graphic user interface for non-bioinformaticians and a command line tool for personal computer usage; (iv) is scalable as it can be executed in parallel as a Snakemake workflow, and; (v) is computationally efficient by minimizing RAM and CPU time requirements. AVAILABILITY AND IMPLEMENTATION: DNAscan2 is implemented in Python3 and is available at https://github.com/KHP-Informatics/DNAscanv2.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação INDEL , Controle de Qualidade , Fluxo de Trabalho
2.
Mult Scler ; 30(1): 103-112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38084497

RESUMO

INTRODUCTION: Multiple sclerosis (MS) is a leading cause of disability among young adults, but standard clinical scales may not accurately detect subtle changes in disability occurring between visits. This study aims to explore whether wearable device data provides more granular and objective measures of disability progression in MS. METHODS: Remote Assessment of Disease and Relapse in Central Nervous System Disorders (RADAR-CNS) is a longitudinal multicenter observational study in which 400 MS patients have been recruited since June 2018 and prospectively followed up for 24 months. Monitoring of patients included standard clinical visits with assessment of disability through use of the Expanded Disability Status Scale (EDSS), 6-minute walking test (6MWT) and timed 25-foot walk (T25FW), as well as remote monitoring through the use of a Fitbit. RESULTS: Among the 306 patients who completed the study (mean age, 45.6 years; females 67%), confirmed disability progression defined by the EDSS was observed in 74 patients, who had approximately 1392 fewer daily steps than patients without disability progression. However, the decrease in the number of steps experienced over time by patients with EDSS progression and stable patients was not significantly different. Similar results were obtained with disability progression defined by the 6MWT and the T25FW. CONCLUSION: The use of continuous activity monitoring holds great promise as a sensitive and ecologically valid measure of disability progression in MS.


Assuntos
Pessoas com Deficiência , Esclerose Múltipla , Dispositivos Eletrônicos Vestíveis , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação da Deficiência , Esclerose Múltipla/diagnóstico , Teste de Caminhada , Caminhada/fisiologia , Adulto
3.
BMC Psychiatry ; 24(1): 409, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816707

RESUMO

BACKGROUND: Eating disorders (EDs) are serious, often chronic, conditions associated with pronounced morbidity, mortality, and dysfunction increasingly affecting young people worldwide. Illness progression, stages and recovery trajectories of EDs are still poorly characterised. The STORY study dynamically and longitudinally assesses young people with different EDs (restricting; bingeing/bulimic presentations) and illness durations (earlier; later stages) compared to healthy controls. Remote measurement technology (RMT) with active and passive sensing is used to advance understanding of the heterogeneity of earlier and more progressed clinical presentations and predictors of recovery or relapse. METHODS: STORY follows 720 young people aged 16-25 with EDs and 120 healthy controls for 12 months. Online self-report questionnaires regularly assess ED symptoms, psychiatric comorbidities, quality of life, and socioeconomic environment. Additional ongoing monitoring using multi-parametric RMT via smartphones and wearable smart rings ('Oura ring') unobtrusively measures individuals' daily behaviour and physiology (e.g., Bluetooth connections, sleep, autonomic arousal). A subgroup of participants completes additional in-person cognitive and neuroimaging assessments at study-baseline and after 12 months. DISCUSSION: By leveraging these large-scale longitudinal data from participants across ED diagnoses and illness durations, the STORY study seeks to elucidate potential biopsychosocial predictors of outcome, their interplay with developmental and socioemotional changes, and barriers and facilitators of recovery. STORY holds the promise of providing actionable findings that can be translated into clinical practice by informing the development of both early intervention and personalised treatment that is tailored to illness stage and individual circumstances, ultimately disrupting the long-term burden of EDs on individuals and their families.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos , Humanos , Adolescente , Adulto Jovem , Adulto , Transtornos da Alimentação e da Ingestão de Alimentos/psicologia , Transtornos da Alimentação e da Ingestão de Alimentos/fisiopatologia , Transtornos da Alimentação e da Ingestão de Alimentos/diagnóstico , Estudos Prospectivos , Feminino , Masculino , Progressão da Doença , Tecnologia de Sensoriamento Remoto/métodos , Tecnologia de Sensoriamento Remoto/instrumentação , Smartphone , Estudos Longitudinais , Qualidade de Vida/psicologia
4.
Nucleic Acids Res ; 50(W1): W367-W374, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35609980

RESUMO

Gene Expression Omnibus (GEO) is a database repository hosting a substantial proportion of publicly available high throughput gene expression data. Gene expression analysis is a powerful tool to gain insight into the mechanisms and processes underlying the biological and phenotypic differences between sample groups. Despite the wide availability of gene expression datasets, their access, analysis, and integration are not trivial and require specific expertise and programming proficiency. We developed the GEOexplorer webserver to allow scientists to access, integrate and analyse gene expression datasets without requiring programming proficiency. Via its user-friendly graphic interface, users can easily apply GEOexplorer to perform interactive and reproducible gene expression analysis of microarray and RNA-seq datasets, while producing a wealth of interactive visualisations to facilitate data exploration and interpretation, and generating a range of publication ready figures. The webserver allows users to search and retrieve datasets from GEO as well as to upload user-generated data and combine and harmonise two datasets to perform joint analyses. GEOexplorer, available at https://geoexplorer.rosalind.kcl.ac.uk, provides a solution for performing interactive and reproducible analyses of microarray and RNA-seq gene expression data, empowering life scientists to perform exploratory data analysis and differential gene expression analysis on-the-fly without informatics proficiency.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Análise em Microsséries , RNA-Seq , Software
5.
Eur Spine J ; 33(7): 2545-2552, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38811438

RESUMO

PURPOSE: Accessible patient information sources are vital in educating patients about the benefits and risks of spinal surgery, which is crucial for obtaining informed consent. We aim to assess the effectiveness of a natural language processing (NLP) pipeline in recognizing surgical procedures from clinic letters and linking this with educational resources. METHODS: Retrospective examination of letters from patients seeking surgery for degenerative spinal disease at a single neurosurgical center. We utilized MedCAT, a named entity recognition and linking NLP, integrated into the electronic health record (EHR), which extracts concepts and links them to systematized nomenclature of medicine-clinical terms (SNOMED-CT). Investigators reviewed clinic letters, identifying words or phrases that described or identified operations and recording the SNOMED-CT terms as ground truth. This was compared to SNOMED-CT terms identified by the model, untrained on our dataset. A pipeline linking clinic letters to patient-specific educational resources was established, and precision, recall, and F1 scores were calculated. RESULTS: Across 199 letters the model identified 582 surgical procedures, and the overall pipeline after adding rules a total of 784 procedures (precision = 0.94, recall = 0.86, F1 = 0.91). Across 187 letters with identified SNOMED-CT terms the integrated pipeline linking education resources directly to the EHR was successful in 157 (78%) patients (precision = 0.99, recall = 0.87, F1 = 0.92). CONCLUSIONS: NLP accurately identifies surgical procedures in pre-operative clinic letters within an untrained subspecialty. Performance varies among letter authors and depends on the language used by clinicians. The identified procedures can be linked to patient education resources, potentially improving patients' understanding of surgical procedures.


Assuntos
Processamento de Linguagem Natural , Educação de Pacientes como Assunto , Humanos , Educação de Pacientes como Assunto/métodos , Estudos Retrospectivos , Registros Eletrônicos de Saúde , Systematized Nomenclature of Medicine
6.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879569

RESUMO

There are currently no disease-modifying treatments for Alzheimer's disease (AD), and an understanding of preclinical causal biomarkers to help target disease pathogenesis in the earliest phases remains elusive. Here, we investigated whether 19 metabolites previously associated with midlife cognition-a preclinical predictor of AD-translate to later clinical risk, using Mendelian randomization (MR) to tease out AD-specific causal relationships. Summary statistics from the largest genome-wide association studies (GWASs) for AD and metabolites were used to perform bidirectional univariable MR. Bayesian model averaging (BMA) was additionally performed to address high correlation between metabolites and identify metabolite combinations that may be on the AD causal pathway. Univariable MR indicated four extra-large high-density lipoproteins (XL.HDL) on the causal pathway to AD: free cholesterol (XL.HDL.FC: 95% CI = 0.78 to 0.94), total lipids (XL.HDL.L: 95% CI = 0.80 to 0.97), phospholipids (XL.HDL.PL: 95% CI = 0.81 to 0.97), and concentration of XL.HDL particles (95% CI = 0.79 to 0.96), significant at an adjusted P < 0.009. MR-BMA corroborated XL.HDL.FC to be among the top three causal metabolites, in addition to total cholesterol in XL.HDL (XL.HDL.C) and glycoprotein acetyls (GP). Both XL.HDL.C and GP demonstrated suggestive univariable evidence of causality (P < 0.05), and GP successfully replicated within an independent dataset. This study offers insight into the causal relationship between metabolites demonstrating association with midlife cognition and AD. It highlights GP in addition to several XL.HDLs-particularly XL.HDL.FC-as causal candidates warranting further investigation. As AD pathology is thought to develop decades prior to symptom onset, expanding on these findings could inform risk reduction strategies.


Assuntos
Doença de Alzheimer/genética , Sangue/metabolismo , Cognição/fisiologia , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/etiologia , Teorema de Bayes , Biomarcadores/sangue , Causalidade , Colesterol , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Biologia Computacional/métodos , Bases de Dados Genéticas , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana/métodos , Metabolômica/métodos , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Triglicerídeos/sangue
7.
J Med Internet Res ; 26: e55302, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941600

RESUMO

BACKGROUND: Previous mobile health (mHealth) studies have revealed significant links between depression and circadian rhythm features measured via wearables. However, the comprehensive impact of seasonal variations was not fully considered in these studies, potentially biasing interpretations in real-world settings. OBJECTIVE: This study aims to explore the associations between depression severity and wearable-measured circadian rhythms while accounting for seasonal impacts. METHODS: Data were sourced from a large longitudinal mHealth study, wherein participants' depression severity was assessed biweekly using the 8-item Patient Health Questionnaire (PHQ-8), and participants' behaviors, including sleep, step count, and heart rate (HR), were tracked via Fitbit devices for up to 2 years. We extracted 12 circadian rhythm features from the 14-day Fitbit data preceding each PHQ-8 assessment, including cosinor variables, such as HR peak timing (HR acrophase), and nonparametric features, such as the onset of the most active continuous 10-hour period (M10 onset). To investigate the association between depression severity and circadian rhythms while also assessing the seasonal impacts, we used three nested linear mixed-effects models for each circadian rhythm feature: (1) incorporating the PHQ-8 score as an independent variable, (2) adding seasonality, and (3) adding an interaction term between season and the PHQ-8 score. RESULTS: Analyzing 10,018 PHQ-8 records alongside Fitbit data from 543 participants (n=414, 76.2% female; median age 48, IQR 32-58 years), we found that after adjusting for seasonal effects, higher PHQ-8 scores were associated with reduced daily steps (ß=-93.61, P<.001), increased sleep variability (ß=0.96, P<.001), and delayed circadian rhythms (ie, sleep onset: ß=0.55, P=.001; sleep offset: ß=1.12, P<.001; M10 onset: ß=0.73, P=.003; HR acrophase: ß=0.71, P=.001). Notably, the negative association with daily steps was more pronounced in spring (ß of PHQ-8 × spring = -31.51, P=.002) and summer (ß of PHQ-8 × summer = -42.61, P<.001) compared with winter. Additionally, the significant correlation with delayed M10 onset was observed solely in summer (ß of PHQ-8 × summer = 1.06, P=.008). Moreover, compared with winter, participants experienced a shorter sleep duration by 16.6 minutes, an increase in daily steps by 394.5, a delay in M10 onset by 20.5 minutes, and a delay in HR peak time by 67.9 minutes during summer. CONCLUSIONS: Our findings highlight significant seasonal influences on human circadian rhythms and their associations with depression, underscoring the importance of considering seasonal variations in mHealth research for real-world applications. This study also indicates the potential of wearable-measured circadian rhythms as digital biomarkers for depression.


Assuntos
Ritmo Circadiano , Depressão , Estações do Ano , Dispositivos Eletrônicos Vestíveis , Humanos , Feminino , Ritmo Circadiano/fisiologia , Masculino , Adulto , Estudos Longitudinais , Depressão/fisiopatologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Telemedicina/estatística & dados numéricos
8.
Sensors (Basel) ; 24(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066012

RESUMO

IoT sensors offer a wide range of sensing capabilities, many of which have potential health applications. Existing solutions for IoT in healthcare have notable limitations, such as closed-source, limited I/O protocols, limited cloud platform support, and missing specific functionality for health use cases. Developing an open-source internet of things (IoT) gateway solution that addresses these limitations and provides reliability, broad applicability, and utility is highly desirable. Combining a wide range of sensor data streams from IoT devices with ambulatory mHealth data would open up the potential to provide a detailed 360-degree view of the relationship between patient physiology, behavior, and environment. We have developed RADAR-IoT as an open-source IoT gateway framework, to harness this potential. It aims to connect multiple IoT devices at the edge, perform limited on-device data processing and analysis, and integrate with cloud-based mobile health platforms, such as RADAR-base, enabling real-time data processing. We also present a proof-of-concept data collection from this framework, using prototype hardware in two locations. The RADAR-IoT framework, combined with the RADAR-base mHealth platform, provides a comprehensive view of a user's health and environment by integrating static IoT sensors and wearable devices. Despite its current limitations, it offers a promising open-source solution for health research, with potential applications in managing infection control, monitoring chronic pulmonary disorders, and assisting patients with impaired motor control or cognitive ability.


Assuntos
Internet das Coisas , Radar , Telemedicina , Humanos , Telemedicina/instrumentação , Dispositivos Eletrônicos Vestíveis , Computação em Nuvem
9.
J Biomed Inform ; 141: 104358, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37023846

RESUMO

Brief Hospital Course (BHC) summaries are succinct summaries of an entire hospital encounter, embedded within discharge summaries, written by senior clinicians responsible for the overall care of a patient. Methods to automatically produce summaries from inpatient documentation would be invaluable in reducing clinician manual burden of summarising documents under high time-pressure to admit and discharge patients. Automatically producing these summaries from the inpatient course, is a complex, multi-document summarisation task, as source notes are written from various perspectives (e.g. nursing, doctor, radiology), during the course of the hospitalisation. We demonstrate a range of methods for BHC summarisation demonstrating the performance of deep learning summarisation models across extractive and abstractive summarisation scenarios. We also test a novel ensemble extractive and abstractive summarisation model that incorporates a medical concept ontology (SNOMED) as a clinical guidance signal and shows superior performance in 2 real-world clinical data sets.


Assuntos
Registros Eletrônicos de Saúde , Registros de Saúde Pessoal , Humanos , Alta do Paciente , Documentação , Hospitais , Processamento de Linguagem Natural
10.
Nucleic Acids Res ; 49(W1): W153-W161, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34125897

RESUMO

As a result of the advent of high-throughput technologies, there has been rapid progress in our understanding of the genetics underlying biological processes. However, despite such advances, the genetic landscape of human diseases has only marginally been disclosed. Exploiting the present availability of large amounts of biological and phenotypic data, we can use our current understanding of disease genetics to train machine learning models to predict novel genetic factors associated with the disease. To this end, we developed DGLinker, a webserver for the prediction of novel candidate genes for human diseases given a set of known disease genes. DGLinker has a user-friendly interface that allows non-expert users to exploit biomedical information from a wide range of biological and phenotypic databases, and/or to upload their own data, to generate a knowledge-graph and use machine learning to predict new disease-associated genes. The webserver includes tools to explore and interpret the results and generates publication-ready figures. DGLinker is available at https://dglinker.rosalind.kcl.ac.uk. The webserver is free and open to all users without the need for registration.


Assuntos
Doença/genética , Software , Esclerose Lateral Amiotrófica/genética , Gráficos por Computador , Genes , Humanos , Aprendizado de Máquina
11.
J Med Internet Res ; 25: e42449, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36749628

RESUMO

The use of data from smartphones and wearable devices has huge potential for population health research, given the high level of device ownership; the range of novel health-relevant data types available from consumer devices; and the frequency and duration with which data are, or could be, collected. Yet, the uptake and success of large-scale mobile health research in the last decade have not met this intensely promoted opportunity. We make the argument that digital person-generated health data are required and necessary to answer many top priority research questions, using illustrative examples taken from the James Lind Alliance Priority Setting Partnerships. We then summarize the findings from 2 UK initiatives that considered the challenges and possible solutions for what needs to be done and how such solutions can be implemented to realize the future opportunities of digital person-generated health data for clinically important population health research. Examples of important areas that must be addressed to advance the field include digital inequality and possible selection bias; easy access for researchers to the appropriate data collection tools, including how best to harmonize data items; analysis methodologies for time series data; patient and public involvement and engagement methods for optimizing recruitment, retention, and public trust; and methods for providing research participants with greater control over their data. There is also a major opportunity, provided through the linkage of digital person-generated health data to routinely collected data, to support novel population health research, bringing together clinician-reported and patient-reported measures. We recognize that well-conducted studies need a wide range of diverse challenges to be skillfully addressed in unison (eg, challenges regarding epidemiology, data science and biostatistics, psychometrics, behavioral and social science, software engineering, user interface design, information governance, data management, and patient and public involvement and engagement). Consequently, progress would be accelerated by the establishment of a new interdisciplinary community where all relevant and necessary skills are brought together to allow for excellence throughout the life cycle of a research study. This will require a partnership of diverse people, methods, and technologies. If done right, the synergy of such a partnership has the potential to transform many millions of people's lives for the better.


Assuntos
Telemedicina , Dispositivos Eletrônicos Vestíveis , Humanos , Smartphone , Projetos de Pesquisa
12.
J Med Internet Res ; 25: e42449, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-39170762

RESUMO

The use of data from smartphones and wearable devices has huge potential for population health research given high device ownership, the range of novel health-relevant data types available from consumer devices, and the frequency and duration over which data are, or could be, collected. Yet the uptake and success of large-scale mobile health research in the last decade has not matched the hyped opportunity. We make the argument that digital person-generated health data is required and necessary to answer many top priority research questions through illustrative examples taken from the James Lind Alliance Priority Setting Partnership. We then summarise the findings from two UK initiatives that considered the challenges and possible solutions for what needs to be done, and in what way, to realise the future opportunities of digital person-generated health data for clinically important population health research. Examples of important areas to be addressed to advance the field include digital inequality and addressing possible selection bias, easy access for researchers to the appropriate data collection tools including how best to harmonise data items, analysis methodology for time series data, methods for patient and public involvement and engagement to optimise recruitment, retention and public trust, and providing greater control of their data to research participants. There is also a major opportunity through the linkage of digital persongenerated health data to routinely-collected data to support novel population health research, bringing together clinician-reported and patient-reported measures. We recognise that well conducted studies need a wide range of diverse challenges to be skilfully addressed in unison: for example, epidemiology, data science and biostatistics, psychometrics, behavioural and social science, software engineering, user interface design, information governance, data management and patient and public involvement and engagement. Consequently, progress would be accelerated by the establishment of a new interdisciplinary community where all relevant and necessary skills are brought together to allow excellence throughout the lifecycle of a research study. This will require a partnership of diverse people, of methods and of technology. Get this right and the synergy has the potential to transform many millions of people's lives for the better.

13.
J Med Internet Res ; 25: e45233, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578823

RESUMO

BACKGROUND: Major depressive disorder (MDD) affects millions of people worldwide, but timely treatment is not often received owing in part to inaccurate subjective recall and variability in the symptom course. Objective and frequent MDD monitoring can improve subjective recall and help to guide treatment selection. Attempts have been made, with varying degrees of success, to explore the relationship between the measures of depression and passive digital phenotypes (features) extracted from smartphones and wearables devices to remotely and continuously monitor changes in symptomatology. However, a number of challenges exist for the analysis of these data. These include maintaining participant engagement over extended time periods and therefore understanding what constitutes an acceptable threshold of missing data; distinguishing between the cross-sectional and longitudinal relationships for different features to determine their utility in tracking within-individual longitudinal variation or screening individuals at high risk; and understanding the heterogeneity with which depression manifests itself in behavioral patterns quantified by the passive features. OBJECTIVE: We aimed to address these 3 challenges to inform future work in stratified analyses. METHODS: Using smartphone and wearable data collected from 479 participants with MDD, we extracted 21 features capturing mobility, sleep, and smartphone use. We investigated the impact of the number of days of available data on feature quality using the intraclass correlation coefficient and Bland-Altman analysis. We then examined the nature of the correlation between the 8-item Patient Health Questionnaire (PHQ-8) depression scale (measured every 14 days) and the features using the individual-mean correlation, repeated measures correlation, and linear mixed effects model. Furthermore, we stratified the participants based on their behavioral difference, quantified by the features, between periods of high (depression) and low (no depression) PHQ-8 scores using the Gaussian mixture model. RESULTS: We demonstrated that at least 8 (range 2-12) days were needed for reliable calculation of most of the features in the 14-day time window. We observed that features such as sleep onset time correlated better with PHQ-8 scores cross-sectionally than longitudinally, whereas features such as wakefulness after sleep onset correlated well with PHQ-8 longitudinally but worse cross-sectionally. Finally, we found that participants could be separated into 3 distinct clusters according to their behavioral difference between periods of depression and periods of no depression. CONCLUSIONS: This work contributes to our understanding of how these mobile health-derived features are associated with depression symptom severity to inform future work in stratified analyses.


Assuntos
Transtorno Depressivo Maior , Telemedicina , Dispositivos Eletrônicos Vestíveis , Humanos , Smartphone , Estudos Transversais , Transtorno Depressivo Maior/diagnóstico , Estudos Retrospectivos
14.
Sensors (Basel) ; 23(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37420672

RESUMO

Terrain traversability is critical for developing Go/No-Go maps for ground vehicles, which significantly impact a mission's success. To predict the mobility of terrain, one must understand the soil characteristics. In-situ measurements performed in the field are the current method of collecting this information, which is time-consuming, costly, and can be lethal for military operations. This paper investigates an alternative approach using thermal, multispectral, and hyperspectral remote sensing from an unmanned aerial vehicle (UAV) platform. Remotely sensed data combined with machine learning (linear, ridge, lasso, partial least squares (PLS), support vector machines (SVM), and k nearest neighbors (KNN)) and deep learning (multi-layer perceptron (MLP) and convolutional neural network (CNN)) are used to perform a comparative study to estimate the soil properties, such as the soil moisture and terrain strength, used to generate prediction maps of these terrain characteristics. This study found that deep learning outperformed machine learning. Specifically, a multi-layer perceptron performed the best for predicting the percent moisture content (R2/RMSE = 0.97/1.55) and the soil strength (in PSI), as measured by a cone penetrometer for the averaged 0-6" (CP06) (R2/RMSE = 0.95/67) and 0-12" depth (CP12) (R2/RMSE = 0.92/94). A Polaris MRZR vehicle was used to test the application of these prediction maps for mobility purposes, and correlations were observed between the CP06 and the rear wheel slip and the CP12 and the vehicle speed. Thus, this study demonstrates the potential of a more rapid, cost-efficient, and safer approach to predict terrain properties for mobility mapping using remote sensing data with machine and deep learning algorithms.


Assuntos
Aprendizado Profundo , Tecnologia de Sensoriamento Remoto/métodos , Redes Neurais de Computação , Aprendizado de Máquina , Solo , Máquina de Vetores de Suporte
15.
Sensors (Basel) ; 23(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447866

RESUMO

The aim of this study was to investigate the feasibility of automatically assessing the 2-Minute Walk Distance (2MWD) for monitoring people with multiple sclerosis (pwMS). For 154 pwMS, MS-related clinical outcomes as well as the 2MWDs as evaluated by clinicians and derived from accelerometer data were collected from a total of 323 periodic clinical visits. Accelerometer data from a wearable device during 100 home-based 2MWD assessments were also acquired. The error in estimating the 2MWD was validated for walk tests performed at hospital, and then the correlation (r) between clinical outcomes and home-based 2MWD assessments was evaluated. Robust performance in estimating the 2MWD from the wearable device was obtained, yielding an error of less than 10% in about two-thirds of clinical visits. Correlation analysis showed that there is a strong association between the actual and the estimated 2MWD obtained either at hospital (r = 0.71) or at home (r = 0.58). Furthermore, the estimated 2MWD exhibits moderate-to-strong correlation with various MS-related clinical outcomes, including disability and fatigue severity scores. Automatic assessment of the 2MWD in pwMS is feasible with the usage of a consumer-friendly wearable device in clinical and non-clinical settings. Wearable devices can also enhance the assessment of MS-related clinical outcomes.


Assuntos
Esclerose Múltipla , Humanos , Caminhada , Teste de Caminhada , Fadiga
16.
Child Adolesc Ment Health ; 28(1): 128-147, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684987

RESUMO

BACKGROUND: Interest in internet-based patient reported outcome measure (PROM) collection is increasing. The NHS myHealthE (MHE) web-based monitoring system was developed to address the limitations of paper-based PROM completion. MHE provides a simple and secure way for families accessing Child and Adolescent Mental Health Services to report clinical information and track their child's progress. This study aimed to assess whether MHE improves the completion of the Strengths and Difficulties Questionnaire (SDQ) compared with paper collection. Secondary objectives were to explore caregiver satisfaction and application acceptability. METHODS: A 12-week single-blinded randomised controlled feasibility pilot trial of MHE was conducted with 196 families accessing neurodevelopmental services in south London to examine whether electronic questionnaires are completed more readily than paper-based questionnaires over a 3-month period. Follow up process evaluation phone calls with a subset (n = 8) of caregivers explored system satisfaction and usability. RESULTS: MHE group assignment was significantly associated with an increased probability of completing an SDQ-P in the study period (adjusted hazard ratio (HR) 12.1, 95% CI 4.7-31.0; p = <.001). Of those caregivers' who received the MHE invitation (n = 68) 69.1% completed an SDQ using the platform compared to 8.8% in the control group (n = 68). The system was well received by caregivers, who cited numerous benefits of using MHE, for example, real-time feedback and ease of completion. CONCLUSIONS: MHE holds promise for improving PROM completion rates. Research is needed to refine MHE, evaluate large-scale MHE implementation, cost effectiveness and explore factors associated with differences in electronic questionnaire uptake.


Assuntos
Serviços de Saúde Mental , Humanos , Criança , Adolescente , Projetos Piloto , Estudos de Viabilidade , Cuidadores , Projetos de Pesquisa
17.
Br J Haematol ; 196(6): 1337-1343, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34957541

RESUMO

Induction therapy for acute myeloid leukaemia (AML) has changed with the approval of a number of new agents. Clinical guidelines can struggle to keep pace with an evolving treatment and evidence landscape and therefore identifying the most appropriate front-line treatment is challenging for clinicians. Here, we combined drug eligibility criteria and genetic risk stratification into a digital format, allowing the full range of possible treatment eligibility scenarios to be defined. Using exemplar cases representing each of the 22 identified scenarios, we sought to generate consensus on treatment choice from a panel of nine aUK AML experts. We then analysed >2500 real-world cases using the same algorithm, confirming the existence of 21/22 of these scenarios and demonstrating that our novel approach could generate a consensus AML induction treatment in 98% of cases. Our approach, driven by the use of decision trees, is an efficient way to develop consensus guidance rapidly and could be applied to other disease areas. It has the potential to be updated frequently to capture changes in eligibility criteria, novel therapies and emerging trial data. An interactive digital version of the consensus guideline is available.


Assuntos
Leucemia Mieloide Aguda , Adulto , Consenso , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia
18.
Cardiology ; 147(1): 98-106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34781301

RESUMO

BACKGROUND: Transparent and robust real-world evidence sources are increasingly important for global health, including cardiovascular (CV) diseases. We aimed to identify global real-world data (RWD) sources for heart failure (HF), acute coronary syndrome (ACS), and atrial fibrillation (AF). METHODS: We conducted a systematic review of publications with RWD pertaining to HF, ACS, and AF (2010-2018), generating a list of unique data sources. Metadata were extracted based on the source type (e.g., electronic health records, genomics, and clinical data), study design, population size, clinical characteristics, follow-up duration, outcomes, and assessment of data availability for future studies and linkage. RESULTS: Overall, 11,889 publications were retrieved for HF, 10,729 for ACS, and 6,262 for AF. From these, 322 (HF), 287 (ACS), and 220 (AF) data sources were selected for detailed review. The majority of data sources had near complete data on demographic variables (HF: 94%, ACS: 99%, and AF: 100%) and considerable data on comorbidities (HF: 77%, ACS: 93%, and AF: 97%). The least reported data categories were drug codes (HF, ACS, and AF: 10%) and caregiver involvement (HF: 6%, ACS: 1%, and AF: 1%). Only a minority of data sources provided information on access to data for other researchers (11%) or whether data could be linked to other data sources to maximize clinical impact (20%). The list and metadata for the RWD sources are publicly available at www.escardio.org/bigdata. CONCLUSIONS: This review has created a comprehensive resource of CV data sources, providing new avenues to improve future real-world research and to achieve better patient outcomes.


Assuntos
Síndrome Coronariana Aguda , Fibrilação Atrial , Insuficiência Cardíaca , Síndrome Coronariana Aguda/epidemiologia , Fibrilação Atrial/epidemiologia , Comorbidade , Insuficiência Cardíaca/epidemiologia , Humanos , Armazenamento e Recuperação da Informação
19.
J Biomed Inform ; 127: 104010, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151869

RESUMO

Multimorbidity is a major factor contributing to increased mortality among people with severe mental illnesses (SMI). Previous studies either focus on estimating prevalence of a disease in a population without considering relationships between diseases or ignore heterogeneity of individual patients in examining disease progression by looking merely at aggregates across a whole cohort. Here, we present a temporal bipartite network model to jointly represent detailed information on both individual patients and diseases, which allows us to systematically characterize disease trajectories from both patient and disease centric perspectives. We apply this approach to a large set of longitudinal diagnostic records for patients with SMI collected through a data linkage between electronic health records from a large UK mental health hospital and English national hospital administrative database. We find that the resulting diagnosis networks show disassortative mixing by degree, suggesting that patients affected by a small number of diseases tend to suffer from prevalent diseases. Factors that determine the network structures include an individual's age, gender and ethnicity. Our analysis on network evolution further shows that patients and diseases become more interconnected over the illness duration of SMI, which is largely driven by the process that patients with similar attributes tend to suffer from the same conditions. Our analytic approach provides a guide for future patient-centric research on multimorbidity trajectories and contributes to achieving precision medicine.


Assuntos
Transtornos Mentais , Multimorbidade , Registros Eletrônicos de Saúde , Humanos , Transtornos Mentais/epidemiologia , Assistência Centrada no Paciente , Prevalência
20.
BMC Cardiovasc Disord ; 22(1): 567, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36567336

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is thought to be highly prevalent yet remains underdiagnosed. Evidence-based treatments are available that increase quality of life and decrease hospitalization. We sought to develop a data-driven diagnostic model to predict from electronic health records (EHR) the likelihood of HFpEF among patients with unexplained dyspnea and preserved left ventricular EF. METHODS AND RESULTS: The derivation cohort comprised patients with dyspnea and echocardiography results. Structured and unstructured data were extracted using an automated informatics pipeline. Patients were retrospectively diagnosed as HFpEF (cases), non-HF (control cohort I), or HF with reduced EF (HFrEF; control cohort II). The ability of clinical parameters and investigations to discriminate cases from controls was evaluated by extreme gradient boosting. A likelihood scoring system was developed and validated in a separate test cohort. The derivation cohort included 1585 consecutive patients: 133 cases of HFpEF (9%), 194 non-HF cases (Control cohort I) and 1258 HFrEF cases (Control cohort II). Two HFpEF diagnostic signatures were derived, comprising symptoms, diagnoses and investigation results. A final prediction model was generated based on the averaged likelihood scores from these two models. In a validation cohort consisting of 269 consecutive patients [with 66 HFpEF cases (24.5%)], the diagnostic power of detecting HFpEF had an AUROC of 90% (P < 0.001) and average precision of 74%. CONCLUSION: This diagnostic signature enables discrimination of HFpEF from non-cardiac dyspnea or HFrEF from EHR and can assist in the diagnostic evaluation in patients with unexplained dyspnea. This approach will enable identification of HFpEF patients who may then benefit from new evidence-based therapies.


Assuntos
Insuficiência Cardíaca , Humanos , Volume Sistólico , Estudos Retrospectivos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Registros Eletrônicos de Saúde , Qualidade de Vida , Dispneia/diagnóstico , Prognóstico , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA