Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Virol ; 98(5): e0020724, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639487

RESUMO

To streamline standard virological assays, we developed a suite of nine fluorescent or bioluminescent replication competent human species C5 adenovirus reporter viruses that mimic their parental wild-type counterpart. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. Moreover, they permit real-time non-invasive measures of viral load, replication dynamics, and infection kinetics over the entire course of infection, allowing measurements that were not previously possible. This suite of replication competent reporter viruses increases the ease, speed, and adaptability of standard assays and has the potential to accelerate multiple areas of human adenovirus research.IMPORTANCEIn this work, we developed a versatile toolbox of nine HAdV-C5 reporter viruses and validated their functions in cell culture. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. The utility of these reporter viruses could also be extended for use in 3D cell culture, organoids, live cell imaging, or animal models, and provides a conceptual framework for the development of new reporter viruses representing other clinically relevant HAdV species.


Assuntos
Adenovírus Humanos , Genes Reporter , Humanos , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/genética , Adenovírus Humanos/fisiologia , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Carga Viral , Replicação Viral
2.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32641484

RESUMO

Human adenoviruses (HAdV) are ubiquitous within the human population and comprise a significant burden of respiratory illnesses worldwide. Pediatric and immunocompromised individuals are at particular risk for developing severe disease; however, no approved antiviral therapies specific to HAdV exist. Ivermectin is an FDA-approved broad-spectrum antiparasitic drug that also exhibits antiviral properties against a diverse range of viruses. Its proposed function is inhibiting the classical protein nuclear import pathway mediated by importin-α (Imp-α) and -ß1 (Imp-ß1). Many viruses, including HAdV, rely on this host pathway for transport of viral proteins across the nuclear envelope. In this study, we show that ivermectin inhibits HAdV-C5 early gene transcription, early and late protein expression, genome replication, and production of infectious viral progeny. Similarly, ivermectin inhibits genome replication of HAdV-B3, a clinically important pathogen responsible for numerous recent outbreaks. Mechanistically, we show that ivermectin disrupts binding of the viral E1A protein to Imp-α without affecting the interaction between Imp-α and Imp-ß1. Our results further extend ivermectin's broad antiviral activity and provide a mechanistic underpinning for its mode of action as an inhibitor of cellular Imp-α/ß1-mediated nuclear import.IMPORTANCE Human adenoviruses (HAdVs) represent a ubiquitous and clinically important pathogen without an effective antiviral treatment. HAdV infections typically cause mild symptoms; however, individuals such as children, those with underlying conditions, and those with compromised immune systems can develop severe disseminated disease. Our results demonstrate that ivermectin, an FDA-approved antiparasitic agent, is effective at inhibiting replication of several HAdV types in vitro This is in agreement with the growing body of literature suggesting ivermectin has broad antiviral activity. This study expands our mechanistic knowledge of ivermectin by showing that ivermectin targets the ability of importin-α (Imp-α) to recognize nuclear localization sequences, without effecting the Imp-α/ß1 interaction. These data also exemplify the applicability of targeting host factors upon which viruses rely as a viable antiviral strategy.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Adenovírus Humanos/efeitos dos fármacos , Antiparasitários/farmacologia , Ivermectina/farmacologia , Replicação Viral/efeitos dos fármacos , alfa Carioferinas/genética , beta Carioferinas/genética , Células A549 , Transporte Ativo do Núcleo Celular/genética , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Adenovírus Humanos/patogenicidade , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Citosol/efeitos dos fármacos , Citosol/metabolismo , Citosol/virologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Regulação da Expressão Gênica , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Transdução de Sinais , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética , Proteínas Virais/metabolismo , alfa Carioferinas/antagonistas & inibidores , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
3.
Trends Mol Med ; 29(1): 4-19, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36336610

RESUMO

The consequences of human adenovirus (HAdV) infections are generally mild. However, despite the perception that HAdVs are harmless, infections can cause severe disease in certain individuals, including newborns, the immunocompromised, and those with pre-existing conditions, including respiratory or cardiac disease. In addition, HAdV outbreaks remain relatively common events and the recent emergence of more pathogenic genomic variants of various genotypes has been well documented. Coupled with evidence of zoonotic transmission, interspecies recombination, and the lack of approved AdV antivirals or widely available vaccines, HAdVs remain a threat to public health. At the same time, the detailed understanding of AdV biology garnered over nearly 7 decades of study has made this group of viruses a molecular workhorse for vaccine and gene therapy applications.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Infecções Respiratórias , Recém-Nascido , Humanos , Adenoviridae/genética , Infecções por Adenovirus Humanos/epidemiologia , Adenovírus Humanos/genética , Genômica , Genótipo , Filogenia
4.
Antiviral Res ; 188: 105034, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33577808

RESUMO

Human adenoviruses (HAdV) are ubiquitous human pathogens that cause a significant burden of respiratory, ocular, and gastrointestinal illnesses. Although HAdV infections are generally self-limiting, pediatric and immunocompromised individuals are at particular risk for developing severe disease. Currently, no approved antiviral therapies specific to HAdV exist. Recent outbreaks underscore the need for effective antiviral agents to treat life-threatening infections. In this review we will focus on recent developments in search of potential therapeutic agents for controlling HAdV infections, with a focus on those targeting post-entry stages of the virus replicative cycle.


Assuntos
Infecções por Adenovirus Humanos/tratamento farmacológico , Adenovírus Humanos/efeitos dos fármacos , Antivirais/uso terapêutico , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/genética , Adenovírus Humanos/fisiologia , Antivirais/farmacologia , Replicação do DNA/efeitos dos fármacos , Reposicionamento de Medicamentos , Quimioterapia Combinada , Epigênese Genética/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Imunoterapia Adotiva , Linfócitos T/imunologia , Replicação Viral/efeitos dos fármacos
5.
Tumour Virus Res ; 12: 200225, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34500123

RESUMO

Papillomaviruses, polyomaviruses and adenoviruses are collectively categorized as the small DNA tumour viruses. Notably, human adenoviruses were the first human viruses demonstrated to be able to cause cancer, albeit in non-human animal models. Despite their long history, no human adenovirus is a known causative agent of human cancers, unlike a subset of their more famous cousins, including human papillomaviruses and human Merkel cell polyomavirus. Nevertheless, seminal research using human adenoviruses has been highly informative in understanding the basics of cell cycle control, gene expression, apoptosis and cell differentiation. This review highlights the contributions of human adenovirus research in advancing our knowledge of the molecular basis of cancer.


Assuntos
Adenovírus Humanos , Neoplasias , Adenoviridae/genética , Proteínas E1A de Adenovirus , Proteínas E1B de Adenovirus , Adenovírus Humanos/genética , Animais , Neoplasias/terapia
6.
Cells ; 10(9)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34572049

RESUMO

Survival following Ebola virus (EBOV) infection correlates with the ability to mount an early and robust interferon (IFN) response. The host IFN-induced proteins that contribute to controlling EBOV replication are not fully known. Among the top genes with the strongest early increases in expression after infection in vivo is IFN-induced HERC5. Using a transcription- and replication-competent VLP system, we showed that HERC5 inhibits EBOV virus-like particle (VLP) replication by depleting EBOV mRNAs. The HERC5 RCC1-like domain was necessary and sufficient for this inhibition and did not require zinc finger antiviral protein (ZAP). Moreover, we showed that EBOV (Zaire) glycoprotein (GP) but not Marburg virus GP antagonized HERC5 early during infection. Our data identify a novel 'protagonist-antagonistic' relationship between HERC5 and GP in the early stages of EBOV infection that could be exploited for the development of novel antiviral therapeutics.


Assuntos
Ebolavirus/fisiologia , Glicoproteínas/metabolismo , Doença pelo Vírus Ebola/prevenção & controle , Interferons/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Vírion/efeitos dos fármacos , Replicação Viral , Antivirais/farmacologia , Glicoproteínas/genética , Células HeLa , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Vírion/metabolismo
7.
Viruses ; 12(6)2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503156

RESUMO

Viruses alter a multitude of host-cell processes to create a more optimal environment for viral replication. This includes altering metabolism to provide adequate substrates and energy required for replication. Typically, viral infections induce a metabolic phenotype resembling the Warburg effect, with an upregulation of glycolysis and a concurrent decrease in cellular respiration. Human adenovirus (HAdV) has been observed to induce the Warburg effect, which can be partially attributed to the adenovirus protein early region 4, open reading frame 1 (E4orf1). E4orf1 regulates a multitude of host-cell processes to benefit viral replication and can influence cellular metabolism through the transcription factor avian myelocytomatosis viral oncogene homolog (MYC). However, E4orf1 does not explain the full extent of Warburg-like HAdV metabolic reprogramming, especially the accompanying decrease in cellular respiration. The HAdV protein early region 1A (E1A) also modulates the function of the infected cell to promote viral replication. E1A can interact with a wide variety of host-cell proteins, some of which have been shown to interact with metabolic enzymes independently of an interaction with E1A. To determine if the HAdV E1A proteins are responsible for reprogramming cell metabolism, we measured the extracellular acidification rate and oxygen consumption rate of A549 human lung epithelial cells with constitutive endogenous expression of either of the two major E1A isoforms. This was followed by the characterization of transcript levels for genes involved in glycolysis and cellular respiration, and related metabolic pathways. Cells expressing the 13S encoded E1A isoform had drastically increased baseline glycolysis and lower maximal cellular respiration than cells expressing the 12S encoded E1A isoform. Cells expressing the 13S encoded E1A isoform exhibited upregulated expression of glycolysis genes and downregulated expression of cellular respiration genes. However, tricarboxylic acid cycle genes were upregulated, resembling anaplerotic metabolism employed by certain cancers. Upregulation of glycolysis and tricarboxylic acid cycle genes was also apparent in IMR-90 human primary lung fibroblast cells infected with a HAdV-5 mutant virus that expressed the 13S, but not the 12S encoded E1A isoform. In conclusion, it appears that the two major isoforms of E1A differentially influence cellular glycolysis and oxidative phosphorylation and this is at least partially due to the altered regulation of mRNA expression for the genes in these pathways.


Assuntos
Proteínas E1A de Adenovirus/metabolismo , Infecções por Adenovirus Humanos/metabolismo , Adenovírus Humanos/metabolismo , Células Epiteliais/virologia , Pulmão/virologia , Células A549 , Proteínas E1A de Adenovirus/genética , Infecções por Adenovirus Humanos/genética , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/genética , Células Epiteliais/metabolismo , Glicólise , Humanos , Pulmão/metabolismo , Fosforilação Oxidativa , Oxigênio/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
8.
Cancers (Basel) ; 12(1)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968678

RESUMO

Human papillomavirus (HPV) causes an increasing number of head and neck squamous cell carcinomas (HNSCCs). Altered metabolism contributes to patient prognosis, but the impact of HPV status on HNSCC metabolism remains relatively uncharacterized. We hypothesize that metabolism-related gene expression differences unique to HPV-positive HNSCC influences patient survival. The Cancer Genome Atlas RNA-seq data from primary HNSCC patient samples were categorized as 73 HPV-positive, 442 HPV-negative, and 43 normal-adjacent control tissues. We analyzed 229 metabolic genes and identified numerous differentially expressed genes between HPV-positive and negative HNSCC patients. HPV-positive carcinomas exhibited lower expression levels of genes involved in glycolysis and higher levels of genes involved in the tricarboxylic acid cycle, oxidative phosphorylation, and ß-oxidation than the HPV-negative carcinomas. Importantly, reduced expression of the metabolism-related genes SDHC, COX7A1, COX16, COX17, ELOVL6, GOT2, and SLC16A2 were correlated with improved patient survival only in the HPV-positive group. This work suggests that specific transcriptional alterations in metabolic genes may serve as predictive biomarkers of patient outcome and identifies potential targets for novel therapeutic intervention in HPV-positive head and neck cancers.

9.
Cells ; 8(6)2019 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181773

RESUMO

Protein nuclear transport is an integral process to many cellular pathways and often plays a critical role during viral infection. To overcome the barrier presented by the nuclear membrane and gain access to the nucleus, virally encoded proteins have evolved ways to appropriate components of the nuclear transport machinery. By binding karyopherins, or the nuclear pore complex, viral proteins influence their own transport as well as the transport of key cellular regulatory proteins. This review covers how viral proteins can interact with different components of the nuclear import machinery and how this influences viral replicative cycles. We also highlight the effects that viral perturbation of nuclear transport has on the infected host and how we can exploit viruses as tools to study novel mechanisms of protein nuclear import. Finally, we discuss the possibility that drugs targeting these transport pathways could be repurposed for treating viral infections.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Poro Nuclear/metabolismo , Vírus/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Carioferinas/metabolismo , Transporte Proteico , Replicação Viral , Vírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA