Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Immunol ; 22(5): 571-585, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33903764

RESUMO

Fibroblastic reticular cells (FRCs) are specialized stromal cells that define tissue architecture and regulate lymphocyte compartmentalization, homeostasis, and innate and adaptive immunity in secondary lymphoid organs (SLOs). In the present study, we used single-cell RNA sequencing (scRNA-seq) of human and mouse lymph nodes (LNs) to identify a subset of T cell-zone FRCs defined by the expression of Gremlin1 (Grem1) in both species. Grem1-CreERT2 knock-in mice enabled localization, multi-omics characterization and genetic depletion of Grem1+ FRCs. Grem1+ FRCs primarily localize at T-B cell junctions of SLOs, neighboring pre-dendritic cells and conventional dendritic cells (cDCs). As such, their depletion resulted in preferential loss and decreased homeostatic proliferation and survival of resident cDCs and compromised T cell immunity. Trajectory analysis of human LN scRNA-seq data revealed expression similarities to murine FRCs, with GREM1+ cells marking the endpoint of both trajectories. These findings illuminate a new Grem1+ fibroblastic niche in LNs that functions to maintain the homeostasis of lymphoid tissue-resident cDCs.


Assuntos
Células Dendríticas Foliculares/imunologia , Fibroblastos/imunologia , Linfonodos/imunologia , Células Estromais/imunologia , Idoso , Animais , Apoptose/genética , Apoptose/imunologia , Proliferação de Células/genética , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Células Dendríticas Foliculares/metabolismo , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica/imunologia , Técnicas de Introdução de Genes , Humanos , Imunidade Celular/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Linfonodos/citologia , Masculino , Camundongos , Camundongos Transgênicos , RNA-Seq , Análise de Célula Única , Células Estromais/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
Nature ; 618(7966): 827-833, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258670

RESUMO

The immune phenotype of a tumour is a key predictor of its response to immunotherapy1-4. Patients who respond to checkpoint blockade generally present with immune-inflamed5-7 tumours that are highly infiltrated by T cells. However, not all inflamed tumours respond to therapy, and even lower response rates occur among tumours that lack T cells (immune desert) or that spatially exclude T cells to the periphery of the tumour lesion (immune excluded)8. Despite the importance of these tumour immune phenotypes in patients, little is known about their development, heterogeneity or dynamics owing to the technical difficulty of tracking these features in situ. Here we introduce skin tumour array by microporation (STAMP)-a preclinical approach that combines high-throughput time-lapse imaging with next-generation sequencing of tumour arrays. Using STAMP, we followed the development of thousands of arrayed tumours in vivo to show that tumour immune phenotypes and outcomes vary between adjacent tumours and are controlled by local factors within the tumour microenvironment. Particularly, the recruitment of T cells by fibroblasts and monocytes into the tumour core was supportive of T cell cytotoxic activity and tumour rejection. Tumour immune phenotypes were dynamic over time and an early conversion to an immune-inflamed phenotype was predictive of spontaneous or therapy-induced tumour rejection. Thus, STAMP captures the dynamic relationships of the spatial, cellular and molecular components of tumour rejection and has the potential to translate therapeutic concepts into successful clinical strategies.


Assuntos
Neoplasias , Linfócitos T , Microambiente Tumoral , Humanos , Imunoterapia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Linfócitos T/imunologia , Fenótipo , Fibroblastos , Monócitos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico
3.
J Immunol ; 211(5): 844-852, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37477665

RESUMO

The lung is a barrier tissue with constant exposure to the inhaled environment. Therefore, innate immunity against particulates and pathogens is of critical importance to maintain tissue homeostasis. Although the lung harbors both myelinating and nonmyelinating Schwann cells (NMSCs), NMSCs represent the most abundant Schwann cell (SC) population in the lung. However, their contribution to lung physiology remains largely unknown. In this study, we used the human glial fibrillary acidic protein promoter driving tdTomato expression in mice to identify SCs in the peripheral nervous system and determine their location within the lung. Single-cell transcriptomic analysis revealed the existence of two NMSC populations (NMSC1 and NMSC2) that may participate in pathogen recognition. We demonstrated that these pulmonary SCs produce chemokines and cytokines upon LPS stimulation using in vitro conditions. Furthermore, we challenged mouse lungs with LPS and found that NMSC1 exhibits an enriched proinflammatory response among all SC subtypes. Collectively, these findings define the molecular profiles of lung SCs and suggest a potential role for NMSCs in lung inflammation.


Assuntos
Lipopolissacarídeos , Transcriptoma , Camundongos , Humanos , Animais , Lipopolissacarídeos/metabolismo , Células de Schwann/metabolismo , Pulmão
4.
Nature ; 480(7378): 543-6, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22113611

RESUMO

Machado-Joseph disease (MJD; also called spinocerebellar ataxia type 3) is a dominantly inherited late-onset neurodegenerative disorder caused by expansion of polyglutamine (polyQ)-encoding CAG repeats in the MJD1 gene (also known as ATXN3). Proteolytic liberation of highly aggregation-prone polyQ fragments from the protective sequence of the MJD1 gene product ataxin 3 (ATXN3) has been proposed to trigger the formation of ATXN3-containing aggregates, the neuropathological hallmark of MJD. ATXN3 fragments are detected in brain tissue of MJD patients and transgenic mice expressing mutant human ATXN3(Q71), and their amount increases with disease severity, supporting a relationship between ATXN3 processing and disease progression. The formation of early aggregation intermediates is thought to have a critical role in disease initiation, but the precise pathogenic mechanism operating in MJD has remained elusive. Here we show that L-glutamate-induced excitation of patient-specific induced pluripotent stem cell (iPSC)-derived neurons initiates Ca(2+)-dependent proteolysis of ATXN3 followed by the formation of SDS-insoluble aggregates. This phenotype could be abolished by calpain inhibition, confirming a key role of this protease in ATXN3 aggregation. Aggregate formation was further dependent on functional Na(+) and K(+) channels as well as ionotropic and voltage-gated Ca(2+) channels, and was not observed in iPSCs, fibroblasts or glia, thereby providing an explanation for the neuron-specific phenotype of this disease. Our data illustrate that iPSCs enable the study of aberrant protein processing associated with late-onset neurodegenerative disorders in patient-specific neurons.


Assuntos
Doença de Machado-Joseph/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Ataxina-3 , Cálcio/metabolismo , Calpaína/metabolismo , Células Cultivadas , Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/farmacologia , Humanos , Neurônios/efeitos dos fármacos
5.
Mol Ther ; 23(9): 1519-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26061647

RESUMO

Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disorder resulting from a functional deficiency of arylsulfatase A (ARSA), an enzyme that catalyzes desulfation of 3-O-sulfogalactosylceramide (sulfatide). Lack of active ARSA leads to the accumulation of sulfatide in oligodendrocytes, Schwann cells and some neurons and triggers progressive demyelination, the neuropathological hallmark of MLD. Several therapeutic approaches have been explored, including enzyme replacement, autologous hematopoietic stem cell-based gene therapy, intracerebral gene therapy or cell-based gene delivery into the central nervous system (CNS). However, long-term treatment of the blood-brain-barrier protected CNS remains challenging. Here we used MLD patient-derived induced pluripotent stem cells (iPSCs) to generate long-term self-renewing neuroepithelial stem cells and astroglial progenitors for cell-based ARSA replacement. Following transplantation of ARSA-overexpressing precursors into ARSA-deficient mice we observed a significant reduction of sulfatide storage up to a distance of 300 µm from grafted cells. Our data indicate that neural precursors generated via reprogramming from MLD patients can be engineered to ameliorate sulfatide accumulation and may thus serve as autologous cell-based vehicle for continuous ARSA supply in MLD-affected brain tissue.


Assuntos
Sistema Nervoso Central/metabolismo , Cerebrosídeo Sulfatase/genética , Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/metabolismo , Sulfoglicoesfingolipídeos/metabolismo , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Diferenciação Celular , Sobrevivência Celular/genética , Terapia Baseada em Transplante de Células e Tecidos/métodos , Cerebrosídeo Sulfatase/metabolismo , Proteínas de Ligação a DNA/deficiência , Modelos Animais de Doenças , Ordem dos Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Lentivirus/genética , Camundongos , Camundongos Knockout , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Transdução Genética
6.
Nat Methods ; 9(6): 575-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22484851

RESUMO

Forced expression of proneural transcription factors has been shown to direct neuronal conversion of fibroblasts. Because neurons are postmitotic, conversion efficiencies are an important parameter for this process. We present a minimalist approach combining two-factor neuronal programming with small molecule-based inhibition of glycogen synthase kinase-3ß and SMAD signaling, which converts postnatal human fibroblasts into functional neuron-like cells with yields up to >200% and neuronal purities up to >80%.


Assuntos
Transdiferenciação Celular , Fibroblastos/fisiologia , Neurônios/fisiologia , Pré-Escolar , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Humanos , Lactente , Recém-Nascido , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/antagonistas & inibidores , Fatores de Transcrição/farmacologia
7.
Am J Pathol ; 182(5): 1769-79, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23499461

RESUMO

Alterations in the microtubule (MT)-associated protein, tau, have emerged as a pivotal phenomenon in several neurodegenerative disorders, including frontotemporal dementia and Alzheimer's disease. Although compelling lines of evidence from various experimental models suggest that hyperphosphorylation and conformational changes of tau can cause its aggregation into filaments, the actual tau species and effective mechanisms that conspire to trigger the degeneration of human neurons remain obscure. Herein, we explored whether human embryonic stem cell-derived neural stem cells can be exploited to study consequences of an overexpression of 2N4R tau (two normal N-terminal and four MT-binding domains; n-tau) versus pseudohyperphosphorylated tau (p-tau) directly in human neurons. Given the involvement of tau in MT integrity and cellular homeostasis, we focused on the effects of both tau variants on subcellular transport and neuronal survival. By using inducible lentiviral overexpression, we show that p-tau, but not n-tau, readily leads to an MC-1-positive protein conformation and impaired mitochondrial transport. Although these alterations do not induce cell death under standard culture conditions, p-tau-expressing neurons cultured under non-redox-protected conditions undergo degeneration with formation of axonal varicosities sequestering transported proteins and progressive neuronal cell death. Our data support a causative link between the phosphorylation and conformational state of tau, microtubuli-based transport, and the vulnerability of human neurons to oxidative stress. They further depict human embryonic stem cell-derived neurons as a useful experimental model for studying tau-associated cellular alterations in an authentic human system.


Assuntos
Células-Tronco Embrionárias/citologia , Modelos Biológicos , Neurônios/metabolismo , Neurônios/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Morte Celular , Diferenciação Celular , Humanos , Camundongos , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Oxirredução , Estresse Oxidativo , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Tauopatias/metabolismo , Proteínas tau/química
8.
Sci Adv ; 10(32): eadl5473, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121212

RESUMO

Despite advancements in antifibrotic therapy, idiopathic pulmonary fibrosis (IPF) remains a medical condition with unmet needs. Single-cell RNA sequencing (scRNA-seq) has enhanced our understanding of IPF but lacks the cellular tissue context and gene expression localization that spatial transcriptomics provides. To bridge this gap, we profiled IPF and control patient lung tissue using spatial transcriptomics, integrating the data with an IPF scRNA-seq atlas. We identified three disease-associated niches with unique cellular compositions and localizations. These include a fibrotic niche, consisting of myofibroblasts and aberrant basaloid cells, located around airways and adjacent to an airway macrophage niche in the lumen, containing SPP1+ macrophages. In addition, we identified an immune niche, characterized by distinct lymphoid cell foci in fibrotic tissue, surrounded by remodeled endothelial vessels. This spatial characterization of IPF niches will facilitate the identification of drug targets that disrupt disease-driving niches and aid in the development of disease relevant in vitro models.


Assuntos
Fibrose Pulmonar Idiopática , Pulmão , Transcriptoma , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/genética , Humanos , Pulmão/patologia , Pulmão/metabolismo , Macrófagos/metabolismo , Análise de Célula Única , Perfilação da Expressão Gênica , Miofibroblastos/metabolismo , Miofibroblastos/patologia
9.
Adv Genet (Hoboken) ; 2(1): e10036, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36618440

RESUMO

ERBB3 is a pseudokinase domain-containing member of the ERBB family of receptor tyrosine kinases (RTKs). Following ligand binding, ERBB receptors homo- or hetero-dimerize, leading to a head-to-tail arrangement of the intracellular kinase domains, where the "receiver" kinase domain of one ERBB is activated by the "activator" domain of the other ERBB in the dimer. In ERBB3, a conserved valine at codon 943 (V943) in the kinase C-terminal domain has been shown to be important for its function as an "activator" kinase in vitro. Here we report a knock-in mouse model where we have modified the endogenous Erbb3 allele to allow for tissue-specific conditional expression of Erbb3 V943R (Erbb3 CKI-V943R ). Additionally, we generated an Erbb3 D850N (Erbb3 CKI-D850N ) conditional knock-in mouse model where the conserved aspartate in the DFG motif of the pseudokinase domain was mutated to abolish any potential residual kinase activity. While Erbb3 D850N/D850N animals developed normally, homozygous Erbb3 V943R/V943R expression during development resulted in embryonic lethality. Further, tissue specific expression of Erbb3 V943R/V943R in the mammary gland epithelium following its activation using MMTV-Cre resulted in delayed elongation of the ductal network during puberty. Single-cell RNA-seq analysis of Erbb3 V943R/V943R mammary glands showed a reduction in a specific subset of fibrinogen-producing luminal epithelial cells.

10.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33620419

RESUMO

Despite the development of effective therapies, a substantial proportion of asthmatics continue to have uncontrolled symptoms, airflow limitation, and exacerbations. Transient receptor potential cation channel member A1 (TRPA1) agonists are elevated in human asthmatic airways, and in rodents, TRPA1 is involved in the induction of airway inflammation and hyperreactivity. Here, the discovery and early clinical development of GDC-0334, a highly potent, selective, and orally bioavailable TRPA1 antagonist, is described. GDC-0334 inhibited TRPA1 function on airway smooth muscle and sensory neurons, decreasing edema, dermal blood flow (DBF), cough, and allergic airway inflammation in several preclinical species. In a healthy volunteer Phase 1 study, treatment with GDC-0334 reduced TRPA1 agonist-induced DBF, pain, and itch, demonstrating GDC-0334 target engagement in humans. These data provide therapeutic rationale for evaluating TRPA1 inhibition as a clinical therapy for asthma.


Assuntos
Asma/tratamento farmacológico , Inflamação Neurogênica/tratamento farmacológico , Dor/tratamento farmacológico , Prurido/tratamento farmacológico , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Canal de Cátion TRPA1/antagonistas & inibidores , Adolescente , Adulto , Animais , Estudos de Coortes , Modelos Animais de Doenças , Cães , Método Duplo-Cego , Feminino , Cobaias , Voluntários Saudáveis , Humanos , Isotiocianatos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Dor/induzido quimicamente , Prurido/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Canal de Cátion TRPA1/deficiência , Resultado do Tratamento , Adulto Jovem
11.
Stem Cells Transl Med ; 7(6): 477-486, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29589874

RESUMO

As a powerful regulator of cellular homeostasis and metabolism, adenosine is involved in diverse neurological processes including pain, cognition, and memory. Altered adenosine homeostasis has also been associated with several diseases such as depression, schizophrenia, or epilepsy. Based on its protective properties, adenosine has been considered as a potential therapeutic agent for various brain disorders. Since systemic application of adenosine is hampered by serious side effects such as vasodilatation and cardiac suppression, recent studies aim at improving local delivery by depots, pumps, or cell-based applications. Here, we report on the characterization of adenosine-releasing human embryonic stem cell-derived neuroepithelial stem cells (long-term self-renewing neuroepithelial stem [lt-NES] cells) generated by zinc finger nuclease (ZFN)-mediated knockout of the adenosine kinase (ADK) gene. ADK-deficient lt-NES cells and their differentiated neuronal and astroglial progeny exhibit substantially elevated release of adenosine compared to control cells. Importantly, extensive adenosine release could be triggered by excitation of differentiated neuronal cultures, suggesting a potential activity-dependent regulation of adenosine supply. Thus, ZFN-modified neural stem cells might serve as a useful vehicle for the activity-dependent local therapeutic delivery of adenosine into the central nervous system. Stem Cells Translational Medicine 2018;7:477-486.


Assuntos
Adenosina/metabolismo , Edição de Genes/métodos , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Adenosina/análise , Adenosina Quinase/deficiência , Adenosina Quinase/genética , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Células-Tronco Embrionárias Humanas/citologia , Humanos , Cariotipagem , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Neurônios/citologia , Polimorfismo de Nucleotídeo Único , Nucleases de Dedos de Zinco/genética
12.
Nat Commun ; 8: 14162, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102196

RESUMO

While transplantation represents a key tool for assessing in vivo functionality of neural stem cells and their suitability for neural repair, little is known about the integration of grafted neurons into the host brain circuitry. Rabies virus-based retrograde tracing has developed into a powerful approach for visualizing synaptically connected neurons. Here, we combine this technique with light sheet fluorescence microscopy (LSFM) to visualize transplanted cells and connected host neurons in whole-mouse brain preparations. Combined with co-registration of high-precision three-dimensional magnetic resonance imaging (3D MRI) reference data sets, this approach enables precise anatomical allocation of the host input neurons. Our data show that the same neural donor cell population grafted into different brain regions receives highly orthotopic input. These findings indicate that transplant connectivity is largely dictated by the circuitry of the target region and depict rabies-based transsynaptic tracing and LSFM as efficient tools for comprehensive assessment of host-donor cell innervation.


Assuntos
Mapeamento Encefálico , Células-Tronco Neurais/fisiologia , Neurônios/transplante , Animais , Encéfalo , Diferenciação Celular/fisiologia , Vetores Genéticos , Humanos , Interneurônios , Imageamento por Ressonância Magnética/métodos , Camundongos , Microscopia de Fluorescência/métodos , Neurônios/fisiologia , Vírus da Raiva/fisiologia
13.
J Cell Biol ; 216(11): 3535-3549, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28887438

RESUMO

A propensity for rewiring genetic and epigenetic regulatory networks, thus enabling sustained cell proliferation, suppression of apoptosis, and the ability to evade the immune system, is vital to cancer cell propagation. An increased understanding of how this is achieved is critical for identifying or improving therapeutic interventions. In this study, using acute myeloid leukemia (AML) human cell lines and a custom CRISPR/Cas9 screening platform, we identify the H3K9 methyltransferase SETDB1 as a novel, negative regulator of innate immunity. SETDB1 is overexpressed in many cancers, and loss of this gene in AML cells triggers desilencing of retrotransposable elements that leads to the production of double-stranded RNAs (dsRNAs). This is coincident with induction of a type I interferon response and apoptosis through the dsRNA-sensing pathway. Collectively, our findings establish a unique gene regulatory axis that cancer cells can exploit to circumvent the immune system.


Assuntos
Inativação Gênica , Interferon Tipo I/metabolismo , Leucemia Mieloide Aguda/enzimologia , Proteínas Metiltransferases/metabolismo , Retroelementos , Apoptose , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Sobrevivência Celular , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Proteínas Metiltransferases/genética , Interferência de RNA , RNA de Cadeia Dupla/biossíntese , RNA de Cadeia Dupla/genética , Transdução de Sinais , Fatores de Tempo , Transfecção , Evasão Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA