Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 196: 106506, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38648865

RESUMO

Imbalances of iron and dopamine metabolism along with mitochondrial dysfunction have been linked to the pathogenesis of Parkinson's disease (PD). We have previously suggested a direct link between iron homeostasis and dopamine metabolism, as dopamine can increase cellular uptake of iron into macrophages thereby promoting oxidative stress responses. In this study, we investigated the interplay between iron, dopamine, and mitochondrial activity in neuroblastoma SH-SY5Y cells and human induced pluripotent stem cell (hiPSC)-derived dopaminergic neurons differentiated from a healthy control and a PD patient with a mutation in the α-synuclein (SNCA) gene. In SH-SY5Y cells, dopamine treatment resulted in increased expression of the transmembrane iron transporters transferrin receptor 1 (TFR1), ferroportin (FPN), and mitoferrin2 (MFRN2) and intracellular iron accumulation, suggesting that dopamine may promote iron uptake. Furthermore, dopamine supplementation led to reduced mitochondrial fitness including decreased mitochondrial respiration, increased cytochrome c control efficiency, reduced mtDNA copy number and citrate synthase activity, increased oxidative stress and impaired aconitase activity. In dopaminergic neurons derived from a healthy control individual, dopamine showed comparable effects as observed in SH-SY5Y cells. The hiPSC-derived PD neurons harboring an endogenous SNCA mutation demonstrated altered mitochondrial iron homeostasis, reduced mitochondrial capacity along with increased oxidative stress and alterations of tricarboxylic acid cycle linked metabolic pathways compared with control neurons. Importantly, dopamine treatment of PD neurons promoted a rescue effect by increasing mitochondrial respiration, activating antioxidant stress response, and normalizing altered metabolite levels linked to mitochondrial function. These observations provide evidence that dopamine affects iron homeostasis, intracellular stress responses and mitochondrial function in healthy cells, while dopamine supplementation can restore the disturbed regulatory network in PD cells.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Homeostase , Ferro , Mitocôndrias , Doença de Parkinson , alfa-Sinucleína , Humanos , Ferro/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Homeostase/fisiologia , Homeostase/efeitos dos fármacos , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular Tumoral , Estresse Oxidativo/fisiologia , Estresse Oxidativo/efeitos dos fármacos
2.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563503

RESUMO

The oxidation of proline to pyrroline-5-carboxylate (P5C) leads to the transfer of electrons to ubiquinone in mitochondria that express proline dehydrogenase (ProDH). This electron transfer supports Complexes CIII and CIV, thus generating the protonmotive force. Further catabolism of P5C forms glutamate, which fuels the citric acid cycle that yields the reducing equivalents that sustain oxidative phosphorylation. However, P5C and glutamate catabolism depend on CI activity due to NAD+ requirements. NextGen-O2k (Oroboros Instruments) was used to measure proline oxidation in isolated mitochondria of various mouse tissues. Simultaneous measurements of oxygen consumption, membrane potential, NADH, and the ubiquinone redox state were correlated to ProDH activity and F1FO-ATPase directionality. Proline catabolism generated a sufficiently high membrane potential that was able to maintain the F1FO-ATPase operation in the forward mode. This was observed in CI-inhibited mouse liver and kidney mitochondria that exhibited high levels of proline oxidation and ProDH activity. This action was not observed under anoxia or when either CIII or CIV were inhibited. The duroquinone fueling of CIII and CIV partially reproduced the effects of proline. Excess glutamate, however, could not reproduce the proline effect, suggesting that processes upstream of the glutamate conversion from proline were involved. The ProDH inhibitors tetrahydro-2-furoic acid and, to a lesser extent, S-5-oxo-2-tetrahydrofurancarboxylic acid abolished all proline effects. The data show that ProDH-directed proline catabolism could generate sufficient CIII and CIV proton pumping, thus supporting ATP production by the F1FO-ATPase even under CI inhibition.


Assuntos
Prolina Oxidase , Ubiquinona , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Complexo I de Transporte de Elétrons/metabolismo , Ácido Glutâmico/metabolismo , Camundongos , Mitocôndrias/metabolismo , Prolina/metabolismo , Prolina Oxidase/metabolismo , Ubiquinona/metabolismo
3.
Curr Opin Clin Nutr Metab Care ; 21(5): 336-342, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29939971

RESUMO

PURPOSE OF REVIEW: The review provides an overview on latest methodological strategies to assess mitochondrial respiratory function in tissue biopsies or blood cells. In addition, it summarizes the recent literature related to this topic. RECENT FINDINGS: Today, the study of mitochondrial function in key metabolic active tissues has been become more relevant, with increasing focus in clinical applications. In addition, assessment of mitochondrial function in blood cells by respirometry might be a sensitive biomarker of disease progression. High-Resolution Respirometry provides a modern tool to study mitochondrial respiratory physiology which allows direct measurement of cellular metabolic function during health and disease. Moreover, standard operating procedures are required regarding instrumental settings, sample collection and preparation, protocol design and respirometric data analysis of mitochondrial respiratory function in tissue biopsies (such as skeletal muscle, liver and adipose tissue), as well as isolated blood cells. SUMMARY: Mitochondrial function is a key factor in many metabolic diseases. Although various analytical approaches are available, certain well-established protocols for isolated mitochondria are limited for the analysis of mitochondrial function in tissue biopsies or blood cells. Thus, cautious considerations in selecting appropriate protocols and analytical endpoints are crucial for the interpretation of the gained data and to draw robust conclusions.


Assuntos
Tecido Adiposo/metabolismo , Células Sanguíneas/metabolismo , Fígado/metabolismo , Mitocôndrias/fisiologia , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Tecido Adiposo/ultraestrutura , Biópsia , Células Sanguíneas/ultraestrutura , Humanos , Fígado/ultraestrutura , Músculo Esquelético/ultraestrutura , Fosforilação Oxidativa
4.
FASEB J ; 29(9): 3863-75, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26045547

RESUMO

We determined the NF-κB- and NOD-like receptor (NLR)P3-dependent molecular mechanisms involved in sepsis and evaluated the role of retinoid-related orphan receptor (ROR)-α in melatonin's anti-inflammatory actions. Western blot, RT-PCR, ELISA, and spectrophotometric analysis revealed that NF-κB and NLRP3 closely interact, leading to proinflammatory and pro-oxidant status in heart tissue of septic C57BL/6J mice. Moreover, mitochondrial oxygen consumption was reduced by 80% in septic mice. In vivo and in vitro analysis showed that melatonin administration blunts NF-κB transcriptional activity through a sirtuin1-dependent NF-κB deacetylation in septic mice. Melatonin also decreased NF-κB-dependent proinflammatory response and restored redox balance and mitochondrial homeostasis, thus inhibiting the NLRP3 inflammasome. In an important finding, the inhibition of NF-κB by melatonin, but not that of NLRP3, was blunted in RORα (sg/sg) mice, indicating that functional RORα transcription factor is necessary for the initiation of the innate immune response against inflammation. Our results are evidence of the NF-κB/NLRP3 connection during sepsis and identify NLRP3 as a novel molecular target for melatonin. The multiple molecular targets of melatonin in this study explain its potent anti-inflammatory efficacy against systemic innate immune activation and herald a promising therapeutic application for melatonin in the treatment of sepsis.


Assuntos
Proteínas de Transporte/metabolismo , Imunidade Inata/efeitos dos fármacos , Melatonina/farmacologia , NF-kappa B/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Sepse/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Imunidade Inata/genética , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Oxirredução/efeitos dos fármacos , Sepse/genética , Sepse/imunologia , Sepse/patologia
5.
J Pineal Res ; 60(2): 193-205, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26681113

RESUMO

The connection between the innate immune system, clock genes, and mitochondrial bioenergetics was analyzed during aging and sepsis in mouse heart. Our results suggest that the sole NF-κB activation does not explain the inflammatory process underlying aging; the former also triggers the NLRP3 inflammasome that enhances caspase-1-dependent maturation of IL-1ß. In this way, aged mice enter into a vicious cycle as IL-1ß further activates the NF-κB/NLRP3 inflammasome link. The origin of NF-κB activation was related to the age-dependent Bmal1/Clock/RORα/Rev-Erbα loop disruption, which lowers NAD(+) levels, reducing the SIRT1 deacetylase ability to inactivate NF-κB. Consequently, NF-κB binding to DNA increases, raising the formation of proinflammatory mediators and inducing mitochondrial impairment. The cycle is then closed with the subsequent NLRP3 inflammasome activation. This paired contribution of the innate immune pathways serves as a catalyst to magnify the response to sepsis in aged compared with young mice. Melatonin administration blunted the septic response, reducing inflammation and oxidative stress, and enhancing mitochondrial function at the levels of nonseptic aged mice, but it did not counteract the age-related inflammation. Together, our results suggest that, although with different strengths, chronoinflammaging constitutes the biochemical substrate of aging and sepsis, and identifies the NLRP3 inflammasome as a new molecular target for melatonin, providing a rationale for its use in NLRP3-dependent diseases.


Assuntos
Envelhecimento/metabolismo , Proteínas de Transporte/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamassomos/metabolismo , Melatonina/farmacologia , NF-kappa B/metabolismo , Sepse/tratamento farmacológico , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sepse/metabolismo , Sepse/patologia
6.
J Pineal Res ; 61(1): 96-107, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27064726

RESUMO

Multiple studies reporting mitochondrial impairment in Parkinson's disease (PD) involve knockout or knockdown models to inhibit the expression of mitochondrial-related genes, including parkin, PINK1, and DJ-1 ones. Melatonin has significant neuroprotective properties, which have been related to its ability to boost mitochondrial bioenergetics. The meaning and molecular targets of melatonin in PD are yet unclear. Zebrafish are an outstanding model of PD because they are vertebrates, their dopaminergic system is comparable to the nigrostriatal system of humans, and their brains express the same genes as mammals. The exposure of 24 hpf zebrafish embryos to MPTP leads to a significant inhibition of the mitochondrial complex I and the induction of sncga gene, responsible for enhancing γ-synuclein accumulation, which is related to mitochondrial dysfunction. Moreover, MPTP inhibited the parkin/PINK1/DJ-1 expression, impeding the normal function of the parkin/PINK1/DJ-1/MUL1 network to remove the damaged mitochondria. This situation remains over time, and removing MPTP from the treatment did not stop the neurodegenerative process. On the contrary, mitochondria become worse during the next 2 days without MPTP, and the embryos developed a severe motor impairment that cannot be rescued because the mitochondrial-related gene expression remained inhibited. Melatonin, added together with MPTP or added once MPTP was removed, prevented and recovered, respectively, the parkinsonian phenotype once it was established, restoring gene expression and normal function of the parkin/PINK1/DJ-1/MUL1 loop and also the normal motor activity of the embryos. The results show, for the first time, that melatonin restores brain function in zebrafish suffering with Parkinson-like disease.


Assuntos
Embrião não Mamífero/metabolismo , Intoxicação por MPTP/tratamento farmacológico , Melatonina/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Intoxicação por MPTP/genética , Intoxicação por MPTP/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
7.
Biochim Biophys Acta ; 1842(7): 893-901, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24576561

RESUMO

Coenzyme Q10 (CoQ10) deficiency (MIM 607426) causes a mitochondrial syndrome with variability in the clinical presentations. Patients with CoQ10 deficiency show inconsistent responses to oral ubiquinone-10 supplementation, with the highest percentage of unsuccessful results in patients with neurological symptoms (encephalopathy, cerebellar ataxia or multisystemic disease). Failure in the ubiquinone-10 treatment may be the result of its poor absorption and bioavailability, which may be improved by using different pharmacological formulations. In a mouse model (Coq9(X/X)) of mitochondrial encephalopathy due to CoQ deficiency, we have evaluated oral supplementation with water-soluble formulations of reduced (ubiquinol-10) and oxidized (ubiquinone-10) forms of CoQ10. Our results show that CoQ10 was increased in all tissues after supplementation with ubiquinone-10 or ubiquinol-10, with the tissue levels of CoQ10 with ubiquinol-10 being higher than with ubiquinone-10. Moreover, only ubiquinol-10 was able to increase the levels of CoQ10 in mitochondria from cerebrum of Coq9(X/X) mice. Consequently, ubiquinol-10 was more efficient than ubiquinone-10 in increasing the animal body weight and CoQ-dependent respiratory chain complex activities, and reducing the vacuolization, astrogliosis and oxidative damage in diencephalon, septum-striatum and, to a lesser extent, in brainstem. These results suggest that water-soluble formulations of ubiquinol-10 may improve the efficacy of CoQ10 therapy in primary and secondary CoQ10 deficiencies, other mitochondrial diseases and neurodegenerative diseases.


Assuntos
Ataxia/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Encefalomiopatias Mitocondriais/tratamento farmacológico , Debilidade Muscular/tratamento farmacológico , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Animais , Encefalopatias/tratamento farmacológico , Tronco Encefálico/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Ubiquinona/farmacologia
8.
Hum Mol Genet ; 22(6): 1233-48, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23255162

RESUMO

Coenzyme Q10 (CoQ(10)) or ubiquinone is a well-known component of the mitochondrial respiratory chain. In humans, CoQ(10) deficiency causes a mitochondrial syndrome with an unexplained variability in the clinical presentations. To try to understand this heterogeneity in the clinical phenotypes, we have generated a Coq9 Knockin (R239X) mouse model. The lack of a functional Coq9 protein in homozygous Coq9 mutant (Coq9(X/X)) mice causes a severe reduction in the Coq7 protein and, as consequence, a widespread CoQ deficiency and accumulation of demethoxyubiquinone. The deficit in CoQ induces a brain-specific impairment of mitochondrial bioenergetics performance, a reduction in respiratory control ratio, ATP levels and ATP/ADP ratio and specific loss of respiratory complex I. These effects lead to neuronal death and demyelinization with severe vacuolization and astrogliosis in the brain of Coq9(X/X) mice that consequently die between 3 and 6 months of age. These results suggest that the instability of mitochondrial complex I in the brain, as a primary event, triggers the development of mitochondrial encephalomyopathy associated with CoQ deficiency.


Assuntos
Encefalomiopatias Mitocondriais/enzimologia , Ubiquinona/deficiência , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Encefalomiopatias Mitocondriais/genética , Ubiquinona/genética , Ubiquinona/metabolismo
9.
J Pineal Res ; 58(1): 34-49, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25388914

RESUMO

Mucositis is a common and distressing side effect of chemotherapy or radiotherapy that has potentially severe consequences, and no treatment is available. The purpose of this study was to analyze the molecular pathways involved in the development of oral mucositis and to evaluate whether melatonin can prevent this pathology. The tongue of male Wistar rats was subjected to irradiation (X-ray YXLON Y.Tu 320-D03 irradiator; the animals received a dose of 7.5 Gy/day for 5 days). Rats were treated with 45 mg/day melatonin or vehicle for 21 days postirradiation, either by local application into their mouths (melatonin gel) or by subcutaneous injection. A connection between reactive oxygen species, generating mitochondria and the NLRP3 (NLR-related protein 3 nucleotide-binding domain leucine-rich repeat containing receptor-related protein 3) inflammasome, has been reported in mucositis. Here, we show that mitochondrial oxidative stress, bioenergetic impairment and subsequent NLRP3 inflammasome activation are involved in the development of oral mucositis after irradiation and that melatonin synthesized in the rat tongue is depleted after irradiation. The application of melatonin gel restores physiological melatonin levels in the tongue and prevents mucosal disruption and ulcer formation. Melatonin gel protects the mitochondria from radiation damage and blunts the NF-κB/NLRP3 inflammasome signaling activation in the tongue. Our results suggest new molecular pathways involved in radiotherapy-induced mucositis that are inhibited by topical melatonin application, suggesting a potential preventive therapy for mucositis in patients with cancer.


Assuntos
Antioxidantes/farmacologia , Melatonina/farmacologia , Mitocôndrias/metabolismo , Lesões Experimentais por Radiação/prevenção & controle , Receptores Citoplasmáticos e Nucleares/metabolismo , Estomatite/prevenção & controle , Animais , Proteínas de Transporte , Inflamassomos/metabolismo , Masculino , Mitocôndrias/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Estomatite/metabolismo , Estomatite/patologia , Língua/metabolismo , Língua/patologia , Raios X/efeitos adversos
10.
J Pineal Res ; 56(1): 71-81, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24117944

RESUMO

While it is accepted that the high production of nitric oxide (NO˙) by the inducible nitric oxide synthase (iNOS) impairs cardiac mitochondrial function during sepsis, the role of neuronal nitric oxide synthase (nNOS) may be protective. During sepsis, there is a significantly increase in the expression and activity of mitochondrial iNOS (i-mtNOS), which parallels the changes in cytosolic iNOS. The existence of a constitutive NOS form (c-mtNOS) in heart mitochondria has been also described, but its role in the heart failure during sepsis remains unclear. Herein, we analyzed the changes in mitochondrial oxidative stress and bioenergetics in wild-type and nNOS-deficient mice during sepsis, and the role of melatonin, a known antioxidant, in these changes. Sepsis was induced by cecal ligation and puncture, and heart mitochondria were analyzed for NOS expression and activity, nitrites, lipid peroxidation, glutathione and glutathione redox enzymes, oxidized proteins, and respiratory chain activity in vehicle- and melatonin-treated mice. Our data show that sepsis produced a similar induction of iNOS/i-mtNOS and comparable inhibition of the respiratory chain activity in wild-type and in nNOS-deficient mice. Sepsis also increased mitochondrial oxidative/nitrosative stress to a similar extent in both mice strains. Melatonin administration inhibited iNOS/i-mtNOS induction, restored mitochondrial homeostasis in septic mice, and preserved the activity of nNOS/c-mtNOS. The effects of melatonin were unrelated to the presence or the absence of nNOS. Our observations show a lack of effect of nNOS on heart bioenergetic impairment during sepsis and further support the beneficial actions of melatonin in sepsis.


Assuntos
Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Miocárdio/citologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Sepse/metabolismo , Análise de Variância , Animais , Antioxidantes/farmacologia , Citosol/química , Citosol/efeitos dos fármacos , Citosol/metabolismo , Modelos Animais de Doenças , Glutationa/análise , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Mitocôndrias/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais/análise , Proteínas Mitocondriais/metabolismo , Óxido Nítrico , Óxido Nítrico Sintase Tipo I/análise , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo II/análise , Óxido Nítrico Sintase Tipo II/genética , Estresse Oxidativo/efeitos dos fármacos
11.
Biochim Biophys Acta Mol Basis Dis ; 1871(1): 167544, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39424161

RESUMO

Glucose is the main energy source of the brain, yet recent studies demonstrate that fatty acid oxidation (FAO) plays a relevant role in the pathogenesis of central nervous system disorders. We evaluated FAO in brain mitochondria under physiological conditions, in the aging brain, and after stroke. Using high-resolution respirometry we compared medium-chain (MC, octanoylcarnitine) and long-chain (LC, palmitoylcarnitine) acylcarnitines as substrates of ß-oxidation in the brain. The protocols developed avoid FAO overestimation by malate-linked anaplerotic activity in brain mitochondria. The capacity of FA oxidative phosphorylation (F-OXPHOS) with palmitoylcarnitine was up to 4 times higher than respiration with octanoylcarnitine. The optimal concentration of palmitoylcarnitine was 10 µM which corresponds to the total concentration of LC acylcarnitines in the brain. Maximal respiration with octanoylcarnitine was reached at 20 µM, however, this concentration exceeds MC acylcarnitine concentrations in the brain 15 times. F-OXPHOS capacity was highest in mouse cerebellum, intermediate in cortex, prefrontal cortex, and hypothalamus, and hardly detectable in hippocampus. F-OXPHOS capacity was 2-fold lower and concentrations of LC acylcarnitines were 2-fold higher in brain of aged rats. A similar trend was observed in the rat model of endothelin-1-induced stroke, but reduction of OXPHOS capacity was not limited to FAO. In conclusion, although FAO is not a dominant pathway in brain bioenergetics, it deserves specific attention in studies of brain metabolism.

12.
Free Radic Biol Med ; 223: 384-397, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39097206

RESUMO

AIM: High-resolution respirometry in human permeabilized muscle fibers is extensively used for analysis of mitochondrial adaptions to nutrition and exercise interventions, and is linked to athletic performance. However, the lack of standardization of experimental conditions limits quantitative inter- and intra-laboratory comparisons. METHODS: In our study, an international team of investigators measured mitochondrial respiration of permeabilized muscle fibers obtained from three biopsies (vastus lateralis) from the same healthy volunteer to avoid inter-individual variability. High-resolution respirometry assays were performed together at the same laboratory to assess whether the heterogenity in published results are due to the effects of respiration media (MiR05 versus Z) with or without the myosin inhibitor blebbistatin at low- and high-oxygen regimes. RESULTS: Our findings reveal significant differences between respiration media for OXPHOS and ETcapacities supported by NADH&succinate-linked substrates at different oxygen concentrations. Respiratory capacities were approximately 1.5-fold higher in MiR05 at high-oxygen regimes compared to medium Z near air saturation. The presence or absence of blebbistatin in human permeabilized muscle fiber preparations was without effect on oxygen flux. CONCLUSION: Our study constitutes a basis to harmonize and establish optimum experimental conditions for respirometric studies of permeabilized human skeletal muscle fibers to improve reproducibility.


Assuntos
Respiração Celular , Mitocôndrias Musculares , Fibras Musculares Esqueléticas , Consumo de Oxigênio , Humanos , Fibras Musculares Esqueléticas/metabolismo , Mitocôndrias Musculares/metabolismo , Fosforilação Oxidativa , Masculino , Oxigênio/metabolismo , Adulto , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Voluntários Saudáveis
13.
Sci Rep ; 14(1): 1729, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242919

RESUMO

Anoxia halts oxidative phosphorylation (OXPHOS) causing an accumulation of reduced compounds in the mitochondrial matrix which impedes dehydrogenases. By simultaneously measuring oxygen concentration, NADH autofluorescence, mitochondrial membrane potential and ubiquinone reduction extent in isolated mitochondria in real-time, we demonstrate that Complex I utilized endogenous quinones to oxidize NADH under acute anoxia. 13C metabolic tracing or untargeted analysis of metabolites extracted during anoxia in the presence or absence of site-specific inhibitors of the electron transfer system showed that NAD+ regenerated by Complex I is reduced by the 2-oxoglutarate dehydrogenase Complex yielding succinyl-CoA supporting mitochondrial substrate-level phosphorylation (mtSLP), releasing succinate. Complex II operated amphidirectionally during the anoxic event, providing quinones to Complex I and reducing fumarate to succinate. Our results highlight the importance of quinone provision to Complex I oxidizing NADH maintaining glutamate catabolism and mtSLP in the absence of OXPHOS.


Assuntos
Mitocôndrias , NAD , Humanos , NAD/metabolismo , Mitocôndrias/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Quinonas/metabolismo , Fosforilação Oxidativa , Succinatos/metabolismo , Hipóxia/metabolismo , Oxirredução
14.
J Pineal Res ; 54(3): 313-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23110416

RESUMO

Melatonin membrane (MT1 and MT2) and nuclear (RORα) receptors have been identified in several mammalian tissues, including the liver. The mechanisms regulating hepatic melatonin receptors are yet unknown. This study investigated whether these receptors exhibit daily changes and the effects of melatonin on their levels. Our results show that mRNAs for MT1/MT2 receptors exhibit circadian rhythms that were followed by rhythms in their respective protein levels; the acrophases for the two rhythms were reached at 04:00 and 05:00 hr, respectively. Pinealectomy blunted the rhythms in both mRNAs and protein levels. In contrast, mRNA and protein levels of nuclear receptor RORα increased significantly after pinealectomy. The cycles of the latter receptor also exhibited circadian rhythms which peaked at 03:00 and 03:45 hr, respectively. Melatonin administration (10-200 mg/kg) increased in a dose-dependent manner the protein content of MT1/MT2 receptors, with no effects on RORα. Lunzindole treatment, however, did not affect melatonin receptor expression or content of either the membrane or nuclear receptors. Together with previously published findings which demonstrated the intracellular distribution of melatonin in rat liver, the current results support the conclusion that the circadian rhythms of MT1/MT2 and RORα receptors are under the control of the serum and intracellular melatonin levels. Moreover, the induction of MT1/MT2 receptors after the administration of high doses of melatonin further suggests that the therapeutic value of melatonin may not be restricted to only low doses of the indoleamine.


Assuntos
Fígado/metabolismo , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , Análise de Variância , Animais , Núcleo Celular/metabolismo , Ritmo Circadiano , Fígado/citologia , Masculino , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/análise , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Glândula Pineal/cirurgia , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/genética
15.
J Sports Sci ; 31(11): 1197-207, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23464526

RESUMO

The present research was designed to evaluate the adaptive responses to oxidative stress and inflammation in handball players subjected to well-controlled training intervals over one-year of competition. Seven blood samples were collected over the season of the study, approximately one a month. Plasma lipid peroxidation, nitrite, cytokines (IL-1ß, IL-6, INFγ and TNFα), and the glutathione cycle in erythrocytes, were measured. Exercise intensity, measured with the Borg's scale, increased significantly up to the middle of the competition season, coinciding with maximal creatine kinase and lactate dehydrogenase values, and then decreased at the end of the study. The inflammatory markers including nitrite, IL-1ß, IL-6, and, to a lesser extent INFγ, increased early in the training season, and remained elevated until the end of the study. TNFα, however, remained low during the season. The oxidative stress response included a transient increase of the glutathione disulphide/glutathione ratio and glutathione reductase activity at the beginning of the study, returning to basal values somewhat later. Glutathione peroxidase also increased at the end of the training season, and lipid peroxidation levels remained low during the athletic season. These results suggest that well-trained athletes were best adapted to the oxidative response, although the beneficial effects of some of the inflammatory cytokines on skeletal muscle myogenesis and repair cannot be ruled out.


Assuntos
Adaptação Fisiológica , Exercício Físico/fisiologia , Inflamação/sangue , Estresse Oxidativo , Condicionamento Físico Humano/fisiologia , Esforço Físico/fisiologia , Esportes/fisiologia , Adulto , Antioxidantes/metabolismo , Biomarcadores/sangue , Comportamento Competitivo/fisiologia , Creatina Quinase/metabolismo , Citocinas/sangue , Humanos , Mediadores da Inflamação/sangue , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Oxirredução , Educação Física e Treinamento , Adulto Jovem
16.
J Pineal Res ; 52(2): 217-27, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21884551

RESUMO

We studied the subcellular levels of melatonin in cerebral cortex and liver of rats under several conditions. The results show that melatonin levels in the cell membrane, cytosol, nucleus, and mitochondrion vary over a 24-hr cycle, although these variations do not exhibit circadian rhythms. The cell membrane has the highest concentration of melatonin followed by mitochondria, nucleus, and cytosol. Pinealectomy significantly increased the content of melatonin in all subcellular compartments, whereas luzindole treatment had little effect on melatonin levels. Administration of 10 mg/kg bw melatonin to sham-pinealectomized, pinealectomized, or continuous light-exposed rats increased the content of melatonin in all subcellular compartments. Melatonin in doses ranging from 40 to 200 mg/kg bw increased in a dose-dependent manner the accumulation of melatonin on cell membrane and cytosol, although the accumulations were 10 times greater in the former than in the latter. Melatonin levels in the nucleus and mitochondria reached saturation with a dose of 40 mg/kg bw; higher doses of injected melatonin did not further cause additional accumulation of melatonin in these organelles. The results suggest some control of extrapineal accumulation or extrapineal production of melatonin and support the existence of regulatory mechanisms in cellular organelles, which prevent the intracellular equilibration of the indolamine. Seemingly, different concentrations of melatonin can be maintained in different subcellular compartments. The data also seem to support a requirement of high doses of melatonin to obtain therapeutic effects. Together, these results add information that assists in explaining the physiology and pharmacology of melatonin.


Assuntos
Córtex Cerebral/química , Fígado/química , Melatonina/análise , Animais , Química Encefálica , Membrana Celular/química , Membrana Celular/metabolismo , Núcleo Celular/química , Núcleo Celular/metabolismo , Córtex Cerebral/metabolismo , Cromatografia Líquida de Alta Pressão , Ritmo Circadiano/fisiologia , Citosol/química , Citosol/metabolismo , Fígado/metabolismo , Masculino , Melatonina/metabolismo , Mitocôndrias/química , Mitocôndrias/metabolismo , Ratos , Ratos Wistar
17.
Cancers (Basel) ; 14(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36010911

RESUMO

Two-dimensional cell cultures are established models in research for studying and perturbing cell-type specific functions. However, many limitations apply to the cell growth in a monolayer using standard cell culture media. Although they have been used for decades, their formulations do not mimic the composition of the human cell environment. In this study, we analyzed the impact of a newly formulated human plasma-like media (HPLM) on cell proliferation, mitochondrial bioenergetics, and alterations of drug efficacies using three distinct cancer cell lines. Using high-resolution respirometry, we observed that cells grown in HPLM displayed significantly altered mitochondrial bioenergetic profiles, particularly related to mitochondrial density and mild uncoupling of respiration. Furthermore, in contrast to standard media, the growth of cells in HPLM unveiled mitochondrial dysfunction upon exposure to the FDA-approved kinase inhibitor sunitinib. This seemingly context-dependent side effect of this drug highlights that the selection of the cell culture medium influences the assessment of cancer drug sensitivities. Thus, we suggest to prioritize media with a more physiological composition for analyzing bioenergetic profiles and to take it into account for assigning drug efficacies in the cell culture model of choice.

18.
Methods Mol Biol ; 1782: 31-70, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850993

RESUMO

Protocols for High-Resolution FluoRespirometry of intact cells, permeabilized cells, permeabilized muscle fibers, isolated mitochondria, and tissue homogenates offer sensitive diagnostic tests of integrated mitochondrial function using standard cell culture techniques, small needle biopsies of muscle, and mitochondrial preparation methods. Multiple substrate-uncoupler-inhibitor titration (SUIT) protocols for analysis of oxidative phosphorylation (OXPHOS) improve our understanding of mitochondrial respiratory control and the pathophysiology of mitochondrial diseases. Respiratory states are defined in functional terms to account for the network of metabolic interactions in complex SUIT protocols with stepwise modulation of coupling control and electron transfer pathway states. A regulated degree of intrinsic uncoupling is a hallmark of oxidative phosphorylation, whereas pathological and toxicological dyscoupling is evaluated as a mitochondrial defect. The noncoupled state of maximum respiration is experimentally induced by titration of established uncouplers (CCCP, FCCP, DNP) to collapse the protonmotive force across the mitochondrial inner membrane and measure the electron transfer (ET) capacity (open-circuit operation of respiration). Intrinsic uncoupling and dyscoupling are evaluated as the flux control ratio between non-phosphorylating LEAK respiration (electron flow coupled to proton pumping to compensate for proton leaks) and ET capacity. If OXPHOS capacity (maximally ADP-stimulated O2 flux) is less than ET capacity, the phosphorylation pathway contributes to flux control. Physiological substrate combinations supporting the NADH and succinate pathway are required to reconstitute tricarboxylic acid cycle function. This supports maximum ET and OXPHOS capacities, due to the additive effect of multiple electron supply pathways converging at the Q-junction. ET pathways with electron entry separately through NADH (pyruvate and malate or glutamate and malate) or succinate (succinate and rotenone) restrict ET capacity and artificially enhance flux control upstream of the Q-cycle, providing diagnostic information on specific ET-pathway branches. O2 concentration is maintained above air saturation in protocols with permeabilized muscle fibers to avoid experimental O2 limitation of respiration. Standardized two-point calibration of the polarographic oxygen sensor (static sensor calibration), calibration of the sensor response time (dynamic sensor calibration), and evaluation of instrumental background O2 flux (systemic flux compensation) provide the unique experimental basis for high accuracy of quantitative results and quality control in High-Resolution FluoRespirometry.


Assuntos
Fluorometria/métodos , Mitocôndrias Musculares/metabolismo , Fosforilação Oxidativa , Polarografia/métodos , Animais , Biópsia , Biópsia por Agulha , Calibragem , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Permeabilidade da Membrana Celular , Respiração Celular , Transporte de Elétrons , Fluorometria/instrumentação , Células HEK293 , Humanos , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/patologia , Consumo de Oxigênio , Polarografia/instrumentação
19.
Methods Mol Biol ; 1782: 137-155, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850998

RESUMO

High-Resolution FluoRespirometry is a well-established and versatile approach to study mitochondrial oxygen uptake amperometrically in combination with measurement of fluorescence signals. One of the most frequently applied fluorescent dyes is Amplex UltraRed for monitoring rates of hydrogen peroxide production. Selection of an appropriate mitochondrial respiration medium is of crucial importance, the primary role of which is to support and preserve optimum mitochondrial function. For harmonization of results in a common database, we compared respiration and H2O2 production of permeabilized HEK 293T cells measured in MiR05 (sucrose and K-lactobionate), Buffer Z (K-MES and KCl), MiR07 (combination of MiR05 and Buffer Z), and MiRK03 (KCl). Respiration in a simple substrate-uncoupler-inhibitor titration protocol was identical in MiR05, Buffer Z, and MiR07, whereas oxygen fluxes detected with MiRK03 were consistently lower in all coupling and electron transfer-pathway states. H2O2 production rates were comparable in all four media, while assay sensitivity was comparatively low with MiR05 and MiR07 and higher but declining over time in the other two media. Stability of assay sensitivity over experimental time was highest in MiR05 but slightly less in MiR07. Taken together, MiR05 and Buffer Z yield comparable results on respiration and H2O2 production. Despite the lower sensitivity, MiR05 was selected as the medium of choice for FluoRespirometry due to the highest stability of the sensitivity or calibration constant observed in experiments over periods of up to 2 h.


Assuntos
Meios de Cultura/química , Corantes Fluorescentes/química , Fluorometria/métodos , Mitocôndrias/metabolismo , Animais , Soluções Tampão , Calibragem , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Permeabilidade da Membrana Celular , Respiração Celular , Fluorometria/instrumentação , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxazinas/química , Sensibilidade e Especificidade
20.
Metallomics ; 9(11): 1634-1644, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29026901

RESUMO

Iron is an essential co-factor for several metabolic processes, including mitochondrial respiration, and mitochondria are the major sites of iron-utilization. Cellular iron homeostasis must be tightly regulated, as intracellular iron deficiency can lead to insufficient energy production, whereas iron overload triggers ROS (reactive oxygen species) formation via the Fenton reaction. So far little is known on how iron imbalances affect mitochondrial function in vivo and the impact of the genotype on that, we studied the effects of dietary iron loading on mitochondrial respiratory capacity in liver by comparing two genetically divergent mouse strains, namely C57BL/6N and FVB mice. Both mouse strains differed in their basal iron levels and their metabolic responses to iron loading as determined by expression of iron trafficking proteins (ferritin was increased in livers of animals receiving high iron diet) as well as tissue iron content (2-fold increase, FVB p = 0.0013; C57BL/6N p = 0.0022). Dietary iron exposure caused a significant impairment of mitochondrial oxidative phosphorylation, especially regarding OXPHOS capacity (FVB p = 0.0006; C57BL/6N p = 0.0087) and S-ETS capacity (FVB p = 0.0281; C57BL/6N p = 0.0159). These effects were more pronounced in C57BL/6N than in FVB mice and were paralleled by an iron mediated induction of oxidative stress in mitochondria. The increased susceptibility of C57BL6/N mice to iron loading may be due to reduced expression of anti-oxidant defense mechanisms and altered iron trafficking upon dietary challenge pointing to a role of genetic modifiers for cellular and mitochondrial iron trafficking. Finally, iron-mediated induction of mitochondrial oxidative stress and reduction of oxidative phosphorylation may underlie fatigue in subjects with iron loading diseases.


Assuntos
Ferro da Dieta/farmacologia , Ferro/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Animais , Células Cultivadas , Ferritinas/genética , Ferritinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Ferro/sangue , Ferro da Dieta/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA