Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Surg Oncol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039381

RESUMO

BACKGROUND: Sentinel lymph node biopsy (SLNB) is performed less often for older patients with melanoma. We investigated the association of SLNB and melanoma-specific survival (MSS) in the elderly. METHODS: We retrospectively reviewed the Surveillance, Epidemiology, and End Results (SEER: 2010-2019) for patients ≥ 70 years with cT2-4N0M0 melanoma. We used multivariable Cox proportional hazard models to evaluate the impact of SLNB performance and SLN status on MSS at increasing age cutoffs. In addition, we evaluated the association of different factors with SLNB performance using multivariable logistic regression. RESULTS: We identified 11,548 patients. Sentinel lymph node biopsy occurred in 6754 (58.5%) patients, 1050 (15.5%) of whom had a positive SLN. On adjusted SEER analysis, a negative SLN was independently associated with improved MSS (overall hazard ratio [HR] 0.59, 95% confidence interval [CI] 0.63-0.67) for patients up to 87 years old. Positive SLNB was independently associated with inferior MSS (HR 1.71, 95% CI 1.93-1.98). Increasing age groups were significantly associated with decreased SLNB performance. CONCLUSIONS: Sentinel lymph node biopsy is associated with cancer-specific survival and adds prognostic information for elderly patients with melanoma. Sentinel lymph node biopsy performance should not be eliminated in elderly patients based on age alone, unless justified by poor performance status, patient preference, or other surgical contraindications. Decreased SLNB performance with increasing age in our cohort may indicate a missed therapeutic opportunity in the care of elderly patients with melanoma.

3.
Med Res Rev ; 38(6): 1769-1798, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29528507

RESUMO

In recent years, lymphangiogenesis, the process of lymphatic vessel formation from existing lymph vessels, has been demonstrated to have a significant role in diverse pathologies, including cancer metastasis, organ graft rejection, and lymphedema. Our understanding of the mechanisms of lymphangiogenesis has advanced on the heels of studies demonstrating vascular endothelial growth factor C as a central pro-lymphangiogenic regulator and others identifying multiple lymphatic endothelial biomarkers. Despite these breakthroughs and a growing appreciation of the signaling events that govern the lymphangiogenic process, there are no FDA-approved drugs that target lymphangiogenesis. In this review, we reflect on the lessons available from the development of antiangiogenic therapies (26 FDA-approved drugs to date), review current lymphangiogenesis research including nanotechnology in therapeutic drug delivery and imaging, and discuss molecules in the lymphangiogenic pathway that are promising therapeutic targets.


Assuntos
Inibidores da Angiogênese/farmacologia , Linfangiogênese/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Ensaios Clínicos como Assunto , Aprovação de Drogas , Humanos , Transdução de Sinais
4.
Angiogenesis ; 21(4): 677-698, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29971641

RESUMO

The study of lymphangiogenesis is an emerging science that has revealed the lymphatic system as a central player in many pathological conditions including cancer metastasis, lymphedema, and organ graft rejection. A thorough understanding of the mechanisms of lymphatic growth will play a key role in the development of therapeutic strategies against these conditions. Despite the known potential of this field, the study of lymphatics has historically lagged behind that of hemangiogenesis. Until recently, significant strides in lymphatic studies were impeded by a lack of lymphatic-specific markers and suitable experimental models compared to those of the more immediately visible blood vasculature. Lymphangiogenesis has also been shown to be a key phenomenon in developmental biological processes, such as cell proliferation, guided migration, differentiation, and cell-to-cell communication, making lymphatic-specific visualization techniques highly desirable and desperately needed. Imaging modalities including immunohistochemistry and in situ hybridization are limited by the need to sacrifice animal models for tissue harvesting at every experimental time point. Moreover, the processes of mounting and staining harvested tissues may introduce artifacts that can confound results. These traditional methods for investigating lymphatic and blood vasculature are associated with several problems including animal variability (e.g., between mice) when replicating lymphatic growth environments and the cost concerns of prolonged, labor-intensive studies, all of which complicate the study of dynamic lymphatic processes. With the discovery of lymphatic-specific markers, researchers have been able to develop several lymphatic and blood vessel-specific, promoter-driven, fluorescent-reporter transgenic mice for visualization of lymphatics in vivo and in vitro. For instance, GFP, mOrange, tdTomato, and other fluorescent proteins can be expressed under control of a lymphatic-specific marker like Prospero-related homeobox 1 (Prox1), which is a highly conserved transcription factor for determining embryonic organogenesis in vertebrates that is implicated in lymphangiogenesis as well as several human cancers. Importantly, Prox1-null mouse embryos develop without lymphatic vessels. In human adults, Prox1 maintains lymphatic endothelial cells and upregulates proteins associated with lymphangiogenesis (e.g., VEGFR-3) and downregulates angiogenesis-associated gene expression (e.g., STAT6). To visualize lymphatic development in the context of angiogenesis, dual fluorescent-transgenic reporters, like Prox1-GFP/Flt1-DsRed mice, have been bred to characterize lymphatic and blood vessels simultaneously in vivo. In this review, we discuss the trends in lymphatic visualization and the potential usage of transgenic breeds in hemangiogenesis and lymphangiogenesis research to understand spatial and temporal correlations between vascular development and pathological progression.


Assuntos
Genes Reporter , Proteínas Luminescentes/biossíntese , Linfangiogênese , Neovascularização Patológica , Neovascularização Fisiológica , Imagem Óptica/métodos , Animais , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/diagnóstico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
5.
Sci Rep ; 9(1): 12331, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444394

RESUMO

The role of the corneal epithelium and limbus in corneal avascularity and pathological neovascularization (NV) is not well understood. To investigate the contributions of the corneal and limbal epithelia in angiogenic and lymphangiogenic privilege, we designed five injury models involving debridement of different portions of the cornea and limbus and applied them to the dual-fluorescence reporter Prox1-GFP/Flt1-DsRed mouse, which permits in vivo imaging of blood and lymphatic vessels via fluorescence microscopy. Debridement of the whole cornea resulted in significant hemangiogenesis (HA) and lymphangiogenesis (LA), while that of the whole limbus yielded minimal corneal HA or LA. Following hemilimbal plus whole corneal debridement, corneal NV occurred only through the non-injured aspect of the limbus. Overall, these results suggest that the integrity of the corneal epithelium is important for (lymph)angiogenic privilege, whereas the limbus does not act as a physical or physiologic barrier to invading vessels. In CDh5-CreERT2VEGFR2lox/PGFD mice, conditional deletion of vascular endothelial growth factor receptor 2 in vascular endothelial cells abolished injury-induced HA and LA, demonstrating the utility of this transgenic mouse line for identifying important factors in the process of neovascularization.


Assuntos
Lesões da Córnea/patologia , Corantes Fluorescentes/metabolismo , Limbo da Córnea/irrigação sanguínea , Limbo da Córnea/patologia , Linfangiogênese , Neovascularização Fisiológica , Animais , Desbridamento , Modelos Animais de Doenças , Epitélio Corneano/patologia , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA