Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(26): 14456-14465, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37350764

RESUMO

Porous liquids (PLs) are attractive materials because of their capability to combine the intrinsic porosity of microporous solids and the processability of liquids. Most of the studies focus on the synthesis of PLs with not only high porosity but also low viscosity by considering their transportation in industrial plants. However, a gap exists between PLs and solid adsorbents for some practical cases, where the liquid characteristics and mechanical stability without leakage are simultaneously required. Here, we fill in this gap by demonstrating a new concept of pore-networked gels, in which the solvent phase is trapped by molecular networks with accessible porosity. To achieve this, we fabricate a linked metal-organic polyhedra (MOPs) gel, followed by exchanging the solvent phase with a bulky liquid such as ionic liquids (ILs); the dimethylformamide solvent trapped inside the as-synthesized gel is replaced by the target IL, 1-butyl-3-methylimidazolium tetrafluoroborate, which in turn cannot enter MOP pores due to their larger molecular size. The remaining volatile solvents in the MOP cavities can then be removed by thermal activation, endowing the obtained IL gel (Gel_IL) with accessible microporosity. The CO2 capacities of the gels are greatly enhanced compared to the neat IL. The exchange with the IL also exerts a positive influence on the final gel performances such as mechanical properties and low volatility. Besides ILs, various functional liquids are shown to be amenable to this strategy to fabricate pore-networked gels with accessible porosity, demonstrating their potential use in the field of gas adsorption or separation.

2.
Phys Chem Chem Phys ; 25(24): 16469-16482, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37306459

RESUMO

Organic ionic plastic crystals (OIPCs) are emerging candidates as safer, quasi solid-state ion conductors for various applications, especially for next-generation batteries. However, a fundamental understanding of these OIPC materials is required, particularly concerning how the choice of cation and anion can affect the electrolyte properties. Here, we report the synthesis and characterisation of a range of new morpholinium-based OIPCs and demonstrate the benefit of the ether functional group in the cation ring. Specifically, we investigate the 4-ethyl-4-methylmorpholinium [C2mmor]+ and 4-isopropyl-4-methylmorpholinium [C(i3)mmor]+ cations paired with bis(fluorosulfonyl)imide [FSI]- and bis(trifluoromethanesulfonyl)imide [TFSI]- anions. A fundamental study of the thermal behaviour and transport properties was performed using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The free volume within the salts has been investigated by positron annihilation lifetime spectroscopy (PALS) and the ion dynamics using solid-state nuclear magnetic resonance (NMR) analysis. Finally, the electrochemical stability window was studied using cyclic voltammetry (CV). Out of the four morpholinium salts, [C2mmor][FSI] exhibits the widest phase I range from 11 to 129 °C, which is advantageous for their application. [C(i3)mmor][FSI] displayed the highest conductivity of 1 × 10-6 S cm-1 at 30 °C, whereas the largest vacancy volume of 132 Å3 was found for [C2mmor][TFSI]. These insights into the properties of new morpholinium-based OIPCs will be important for developing new electrolytes with optimised thermal and transport properties for a range of clean energy applications.

3.
Nature ; 532(7600): 480-3, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27121841

RESUMO

The regulation of water content in polymeric membranes is important in a number of applications, such as reverse electrodialysis and proton-exchange fuel-cell membranes. External thermal and water management systems add both mass and size to systems, and so intrinsic mechanisms of retaining water and maintaining ionic transport in such membranes are particularly important for applications where small system size is important. For example, in proton-exchange membrane fuel cells, where water retention in the membrane is crucial for efficient transport of hydrated ions, by operating the cells at higher temperatures without external humidification, the membrane is self-humidified with water generated by electrochemical reactions. Here we report an alternative solution that does not rely on external regulation of water supply or high temperatures. Water content in hydrocarbon polymer membranes is regulated through nanometre-scale cracks ('nanocracks') in a hydrophobic surface coating. These cracks work as nanoscale valves to retard water desorption and to maintain ion conductivity in the membrane on dehumidification. Hydrocarbon fuel-cell membranes with surface nanocrack coatings operated at intermediate temperatures show improved electrochemical performance, and coated reverse-electrodialysis membranes show enhanced ionic selectivity with low bulk resistance.


Assuntos
Membranas Artificiais , Nanotecnologia , Polímeros/química , Água/análise , Materiais Biomiméticos/química , Biomimética , Cactaceae/metabolismo , Dessecação , Diálise , Eletroquímica , Umidade , Interações Hidrofóbicas e Hidrofílicas , Estômatos de Plantas/metabolismo , Prótons , Propriedades de Superfície , Temperatura
4.
Angew Chem Int Ed Engl ; 60(12): 6593-6599, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33278319

RESUMO

Gas-separation polymer membranes display a characteristic permeability-selectivity trade-off that has limited their industrial use. The most comprehensive approach to improving performance is to devise strategies that simultaneously increase fractional free volume, narrow free volume distribution, and enhance sorption selectivity, but generalizable methods for such approaches are exceedingly rare. Here, we present an in situ crosslinking and solid-state deprotection method to access previously inaccessible sorption and diffusion characteristics in amine-functionalized polymers of intrinsic microporosity. Free volume element (FVE) size can be increased while preserving a narrow FVE distribution, enabling below-upper bound polymers to surpass the H2 /N2 , H2 /CH4 , and O2 /N2 upper bounds and improving CO2 -based selectivities by 200 %. This approach can transform polymers into chemical analogues with improved performance, thereby overcoming traditional permeability-selectivity trade-offs.

5.
Phys Chem Chem Phys ; 22(32): 18102-18113, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32760990

RESUMO

Ionic liquids and plastic crystals based on pyrrolidinium cations are recognised for their advantageous properties such as high conductivity, low viscosity, and good electrochemical and thermal stability. The pyrrolidinium ring can be substituted with symmetric or asymmetric alkyl chain substituents to form a range of ionic liquids or plastic crystals depending on the anion. However, reports into the use of branched alkyl chains and how this influences the material properties are limited. Here, we report the synthesis of six salts - ionic liquids and organic ionic plastic crystals - where the typically used linear propyl chain substituent is replaced by the branched alternative, isopropyl, to form the cation [C(i3)mpyr]+, in combination with six different anions: dicyanamide, (fluorosulfonyl)(trifluoromethanesulfonyl)imide, bis(trifluoromethanesulfonyl)imide, bis(fluorosulfonyl)imide, tetrafluoroborate and hexafluorophosphate. The thermal and transport properties of these salts are compared to those of the analogous N-propyl-N-methylpyrrolidinium and N,N-diethylpyrrolidinium-based salts. Finally, a high lithium salt content ionic liquid electrolyte based on the bis(fluorosulfonyl)imide salt was developed. This electrolyte showed high coulombic efficiencies of lithium plating/stripping and high lithium ion transference number, making it a strong candidate for use in lithium metal batteries.

6.
Angew Chem Int Ed Engl ; 59(44): 19561-19569, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32648629

RESUMO

Porosity and acidity are influential properties in the rational design of solid-acid catalysts. Probing the physicochemical characteristics of an acidic zeotype framework at the molecular level can provide valuable insights in understanding intrinsic reaction pathways, for affording structure-activity relationships. Herein, we employ a variety of probe-based techniques (including positron annihilation lifetime spectroscopy (PALS), FTIR and solid-state NMR spectroscopy) to demonstrate how a hierarchical design strategy for a faujasitic (FAU) zeotype (synthesized for the first time, via a soft-templating approach, with high phase-purity) can be used to simultaneously modify the porosity and modulate the acidity for an industrially significant catalytic process (Beckmann rearrangement). Detailed characterization of hierarchically porous (HP) SAPO-37 reveals enhanced mass-transport characteristics and moderated acidity, which leads to superior catalytic performance and increased resistance to deactivation by coking, compared to its microporous counterpart, further vindicating the interplay between porosity and moderated acidity.

7.
J Am Chem Soc ; 141(9): 3828-3832, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30776225

RESUMO

One prominent aspect of metal organic frameworks (MOFs) is the ability to tune the size, shape, and chemical characteristics of their pores. MOF-5, with its open cubic connectivity of Zn4O clusters joined by two-dimensional, terephthalate linkers, is the archetypal example: both functionalized and elongated linkers produce isoreticular frameworks that define pores with new shapes and chemical environments. The recent scalable synthesis of cubane-1,4-dicarboxylic acid (1,4-H2cdc) allows the first opportunity to explore its application in leading reticular architectures. Herein we describe the use of 1,4-H2cdc to construct [Zn4O(1,4-cdc)3], referred to as CUB-5. Isoreticular with MOF-5, CUB-5 adopts a cubic architecture but features aliphatic, rather than aromatic, pore surfaces. Methine units point directly into the pores, delivering new and unconventional adsorption locations. Our results show that CUB-5 is capable of selectively adsorbing high amounts of benzene at low partial pressures, promising for future investigations into the industrial separation of benzene from gasoline using aliphatic MOF materials. These results present an effective design strategy for the generation of new MOF materials with aliphatic pore environments and properties previously unattainable in conventional frameworks.

8.
Small ; 15(36): e1902268, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31259481

RESUMO

Recent work in biomolecule-metal-organic framework (MOF) composites has proven to be an effective strategy for the protection of proteins. However, for other biomacromolecules such as nucleic acids, the encapsulation into nano MOFs and the related characterizations are in their infancy. Herein, encapsulation of a complete gene-set in zeolitic imidazolate framework-8 (ZIF-8) MOFs and cellular expression of the gene delivered by the nano MOF composites are reported. Using a green fluorescent protein (GFP) plasmid (plGFP) as a proof-of-concept genetic macromolecule, successful transfection of mammalian cancer cells with plGFP for up to 4 days is shown. Cell transfection assays and soft X-ray cryo-tomography (cryo-SXT) demonstrate the feasibility of DNA@MOF biocomposites as intracellular gene delivery vehicles. Expression occurs over relatively prolonged time points where the cargo nucleic acid is released gradually in order to maintain sustained expression.


Assuntos
Biomimética/métodos , DNA/química , Terapia Genética/métodos , Zeolitas/química , Plasmídeos/genética , Transfecção/métodos
9.
Phys Chem Chem Phys ; 21(23): 12288-12300, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31139779

RESUMO

The synthesis and characterisation of new solid-state electrolytes is a key step in advancing the development of safer and more reliable electrochemical energy storage technologies. Organic ionic plastic crystals (OIPCs) are an increasingly promising class of material for application in devices such as lithium or sodium metal batteries as they can support high ionic conductivity, with good electrochemical and thermal stability. However, the choice of OIPC-forming ions is still relatively limited. Furthermore, understanding of the influence of different cations and anions on the thermal, structural and transport properties of these materials is still in its infancy. Here we report the synthesis and in-depth characterisation of a range of new OIPCs utilising the hexamethylguanidinium cation ([HMG]) with five different anions. The thermal, structural, transport properties and free volume in the different salts have been investigated. The free volume within the salts has been investigated by positron annihilation lifetime spectroscopy, and the single crystal and powder X-ray diffraction analysis of [HMG] bis(trifluoromethanesulfonyl)imide ([TFSI]) in phase I and II, [HMG] hexafluorophosphate ([PF6]) and [HMG] tetrafluoroborate ([HMG][BF4]) are reported. The HMG cation can exhibit significant disorder, which is advantageous for plasticity and future use of these materials as high ionic conductivity matrices. The bis(fluorosulfonyl)imide salt, [HMG][FSI], is identified as particularly promising for use as an electrolyte, with good electrochemical stability and soft mechanical properties. The findings introduce a range of new materials to the solid-state electrolyte arena, while the insights into the physico-chemical relationships in these materials will be of importance for the future development and understanding of other ionic electrolytes.

10.
Angew Chem Int Ed Engl ; 58(47): 16928-16935, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31535784

RESUMO

Homochiral metal-organic framework (MOF) membranes have been recently reported for chiral separations. However, only a few high-quality homochiral polycrystalline MOF membranes have been fabricated due to the difficulty in crystallization of a chiral MOF layer without defects on porous substrates. Alternatively, mixed matrix membranes (MMMs), which combine potential advantages of MOFs and polymers, have been widely demonstrated for gas separation and water purification. Here we report novel homochiral MOF-polymer MMMs for efficient chiral separation. Homochirality was successfully incorporated into achiral MIL-53-NH2 nanocrystals by post-synthetic modification with amino acids, such as l-histidine (l-His) and l-glutamic acid (l-Glu). The MIL-53-NH-l-His and MIL-53-NH-l-Glu nanocrystals were then embedded into polyethersulfone (PES) matrix to form homochiral MMMs, which exhibited excellent enantioselectivity for racemic 1-phenylethanol with the highest enantiomeric excess value up to 100 %. This work, as an example, demonstrates the feasibility of fabricating diverse large-scale homochiral MOF-based MMMs for chiral separation.

11.
Langmuir ; 33(18): 4543-4550, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28412818

RESUMO

Transparent, low-density ethenylene-bridged polymethylsiloxane [Ethe-BPMS, O2/2(CH3)Si-CH═CH-Si(CH3)O2/2] aerogels from 1,2-bis(methyldiethoxysilyl)ethene have successfully been synthesized via a sol-gel process. A two-step sol-gel process composed of hydrolysis under acidic conditions and polycondensation under basic conditions in a liquid surfactant produces a homogeneous pore structure based on cross-linked nanosized colloidal particles. Visible-light transmittance of the aerogels varies with the concentration of the base catalyst and reaches as high as 87% (at a wavelength of 550 nm for a 10 mm thick sample). Gelation and aging temperature strongly affect the deformation behavior of the resultant aerogels against uniaxial compression, and the obtained aerogels prepared at 80 °C show high elasticity after being unloaded. This highly resilient behavior is primarily derived from the rigidity of ethenylene groups, which is confirmed by a comparison with other aerogels with similar molecular structures, ethylene-bridged polymethylsiloxane and polymethylsilsesquioxane. Applicability of the addition reaction using a Diels-Alder reaction of benzocyclobutene has also been investigated, revealing that a successful addition takes place on the ethenylene linkings, which is verified using Raman and solid-state NMR spectroscopies. Insights into the effect of molecular structure on mechanical properties and the availability of surface functionalization provided in this study are important for realizing transparent aerogels with the desired functionality.

12.
Angew Chem Int Ed Engl ; 55(6): 1998-2001, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26749173

RESUMO

The loss of internal pores, a process known as physical aging, inhibits the long-term use of the most promising gas-separation polymers. Previously we reported that a porous aromatic framework (PAF-1) could form a remarkable nanocomposite with gas-separation polymers to stop aging. However, PAF-1 synthesis is very onerous both from a reagent and reaction-condition perspective, making it difficult to scale-up. We now reveal a highly dispersible and scalable additive based on α,α'-dichloro-p-xylene (p-DCX), that inhibits aging more effectively, and crucially almost doubles gas-transport selectivity. These synergistic effects are related to the intimately mixed nanocomposite that is formed though the high dispersibility of p-DCX in the gas-separation polymer. This reduces particle-size effects and the internal free volume is almost unchanged over time. This study shows this inexpensive and scalable polymer additive delivers exceptional gas-transport performance and selectivity.

13.
Acc Chem Res ; 47(2): 396-405, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24205847

RESUMO

A critical materials challenge over the next quarter century is the sustainable use and management of the world's natural resources, particularly the scarcest of them. Chemistry's ability to get more from less is epitomized by porous coordination polymers, also known as metal-organic frameworks (MOFs), which use a minimum amount of material to build maximum surface areas with fine control over pore size. Their large specific surface area and tunable porosity make MOFs useful for applications including small-molecule sensing, separation, catalysis, and storage and release of molecules of interest. Proof-of-concept projects have demonstrated their potential for environmental applications such as carbon separation and capture, water purification, carcinogen sequestration, byproduct separation, and resource recovery. To translate these from the laboratory into devices for actual use, however, will require synthesis of MOFs with new functionality and structure. This Account summarizes recent progress in the use of nano- and microparticles to control the function, location, and 3D structure of MOFs during MOF self-assembly, creating novel, hybrid, multifunctional, ultraporous materials as a first step towards creating MOF-based devices. The use of preformed ceramic, metallic, semiconductive, or polymeric particles allows the particle preparation process to be completely independent of the MOF synthesis, incorporating nucleating, luminescent, magnetic, catalytic, or templating particles into the MOF structure. We discuss success in combining functional nanoparticles and porous crystals for applications including molecular sieve detectors, repositionable and highly sensitive sensors, pollutant-sequestering materials, microfluidic microcarriers, drug-delivery materials, separators, and size-selective catalysts. In sections within the Account, we describe how functional particles can be used for (1) heterogeneous nucleation (seeding) of MOFs, (2) preparation of framework composites with novel properties, (3) MOF positioning on a substrate (patterning), and (4) synthesis of MOFs with novel architectures.

14.
Chem Soc Rev ; 43(16): 5513-60, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24802634

RESUMO

Metal organic frameworks (MOFs) offer the highest surface areas per gram of any known material. As such, they epitomise resource productivity in uses where specific surface area is critical, such as adsorption, storage, filtration and catalysis. However, the ability to control the position of MOFs is also crucial for their use in devices for applications such as sensing, delivery, sequestration, molecular transport, electronics, energy production, optics, bioreactors and catalysis. In this review we present the current technologies that enable the precise positioning of MOFs onto different platforms. Methods for permanent localisation, dynamic localisation, and spatial control of functional materials within MOF crystals are described. Finally, examples of devices in which the control of MOF position and functionalisation will play a major technological role are presented.

15.
Org Biomol Chem ; 12(37): 7201-10, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24971654

RESUMO

The selectivity and rebinding capacity of molecularly imprinted polymers selective for propranolol (1) using the room temperature ionic liquids [BMIM][BF4], [BMIM][PF6], [HMIM][PF6] and [OMIM][PF6] and CHCl3 were examined. The observed IF (imprinting factor) values for MIPBF4, MIPPF6 and MIPCHCl3 were 1.0, 1.98 and 4.64, respectively. The longer chain HMIM and OMIM systems returned lower IF values of 1.1 and 2.3, respectively. MIPPF6 also showed a 25% binding capacity reduction vs. MIPCHCl3 (5 µmol g(−1)vs. 7 µmol g(−1) respectively). MIPCHCl3 and MIPPF6 differed in terms of BET surface area (306 m(2) g(−1)vs. 185 m(2) g(−1)), pore size (1.10 and 2.19 nm vs. 0.97 and 7.06 nm), the relative number of pores (Type A: 10.4 vs. 7.5%; Type B: 8.5 vs. 3.0%), and surface zeta potential (−37.9 mV vs. −20.3 mV). The MIP specificity for 1 was examined by selective rebinding studies with caffeine (2) and ephedrine (3). MIPPF6 rebound higher quantities of 2 than MIPCHCl3, but this was largely due to non-specific binding. Both MIPCHCl3 and MIPPF6 showed a higher affinity for 3 than for 2. Reduction in the Room Temperature Ionic Liquid (RTIL) porogen volume had little impact on the polymer morphology, but did result in a modest decrease in IF from 2.6 to 2.3 and in the binding capacity (30% to 19%). MIPCHCl3 retained the highest template specificity on rebinding from CHCl3 (IF = 4.6) dropping to IF = 0.6 in MeOH/[BMIM][PF6]. The MIPCHCl3 binding capacity remained constant using CHCl3, CH2Cl2 and MeOH (46­52%), dropped to 6% on addition of [BMIM][PF6] and increased to 83% in H2O (but at the expense of specificity with IFH2O = 1.4). MIPPF6 rebinding from MeOH saw an increase in specific rebinding to IF = 4.9 and also an increase in binding capacity to 48% when rebinding 1 from MeOH and to 42% and 45% with H2O and CH2Cl2, respectively, although in the latter case the increased capacity was at the cost of specificity with IFCH2Cl2 = 1.2. Overall the MIPPF6 capacity and specificity were enhanced on addition of MeOH.

16.
J Nanosci Nanotechnol ; 14(9): 6565-73, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25924301

RESUMO

Beta-Glucosidase has been chosen as a model biomolecule to establish a general protocol for binding enzymes on both ferromagnetic and superparamagnetic nano-particles for sensing applications. Using EDC (1-(3-dimethyl-aminopropyl)-3-ethylcarbodiimide) or SMCC (Succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate) as coupling agents, we compared two different methods for the fabrication of enzyme-decorated magnetic nanoparticles. We identified the best conditions for the preparation of a responsive bioactive magnetic system comparing different covalent bio-grafting protocols. The enzymatic test has been performed using beta-Glucosidase. The systems were characterized using scanning electron microscopy, infrared spectroscopy, and the enzyme loading was measured by a glucose assay in the presence of the enzyme-decorated magnetic particles. Although the faster response of ferromagnetic particles to the magnetic field, the assay results suggested that the superparamagnetic particles are more efficient carriers. In fact, the best enzymatic activity was measured on superparamagnetic systems that have the further advantage of preventing aggregation induced by the residual magnetization. Hence, beta-Glucosidase coated magnetic nanospheres could provide an attractive system suitable for the cleavage and the rapid evaluation of glycoside levels in natural products, measuring the liberated glucose without the need for specialised instrumentation. Moreover, the magnetic particles allow the subsequent collection of enzymes for further analysis, such as its use in portable fast screening kits or devices.


Assuntos
Técnicas Biossensoriais/instrumentação , Enzimas Imobilizadas/química , Nanopartículas de Magnetita/química , Nanotecnologia/métodos , beta-Glucosidase/química , Técnicas Biossensoriais/métodos , Enzimas Imobilizadas/metabolismo , Glucose/análise , Glucose/metabolismo , beta-Glucosidase/metabolismo
17.
Angew Chem Int Ed Engl ; 53(21): 5322-6, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24740816

RESUMO

Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This age-old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position. This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N2 selectivity. This approach could allow super glassy polymers to be revisited for commercial application in gas separations.

18.
ACS Appl Mater Interfaces ; 16(8): 11116-11124, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38372265

RESUMO

Mixed matrix materials (MMMs) containing metal-organic framework (MOF) nanoparticles are attractive for membrane carbon capture. Particularly, adding <5 mass % MOFs in polymers dramatically increased gas permeability, far surpassing the Maxwell model's prediction. However, no sound mechanisms have been offered to explain this unusual low-loading phenomenon. Herein, we design an ideal series of MMMs containing polyethers (one of the leading polymers for CO2/N2 separation) and discrete metal-organic polyhedra (MOPs) with cage sizes of 2-5 nm. Adding 3 mass % MOP-3 in a polyether increases the CO2 permeability by 100% from 510 to 1000 Barrer at 35 °C because of the increased gas diffusivity. No discernible changes in typical physical properties governing gas transport properties are detected, such as glass transition temperature, fractional free volume, d-spacing, etc. We hypothesize that this behavior is attributed to fractal-like networks formed by highly porous MOPs, and for the first time, we validate this hypothesis using small-angle X-ray scattering analysis.

19.
Small ; 9(13): 2277-82, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23447493

RESUMO

Microchannels are fabricated using a photosensitive polymer to which microporosity is tuned with different X-ray doses. Using hard X-ray irradiation, the micropattern is positioned with various geometries in a multi-level, three-dimensional structure, while controlling the pore size and transport properties of small molecules. This highly reliable fabrication process has potential for use in microfluidic devices with enhanced transport properties through microchannels.

20.
Nat Commun ; 14(1): 2161, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061522

RESUMO

Engineering different two-dimensional materials into heterostructured membranes with unique physiochemical properties and molecular sieving channels offers an effective way to design membranes for fast and selective gas molecule transport. Here we develop a simple and versatile pyro-layering approach to fabricate heterostructured membranes from boron nitride nanosheets as the main scaffold and graphene nanosheets derived from a chitosan precursor as the filler. The rearrangement of the graphene nanosheets adjoining the boron nitride nanosheets during the pyro-layering treatment forms precise in-plane slit-like nanochannels and a plane-to-plane spacing of ~3.0 Å, thereby endowing specific gas transport pathways for selective hydrogen transport. The heterostructured membrane shows a high H2 permeability of 849 Barrer, with a H2/CO2 selectivity of 290. This facile and scalable technique holds great promise for the fabrication of heterostructures as next-generation membranes for enhancing the efficiency of gas separation and purification processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA