Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Biol ; 220(4): 855-66, 1991 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-1831859

RESUMO

The transfectivity of anthramycin (Atm)-modified phi X174 replicative form (RF) DNA in Escherichia coli is lower in uvrA and uvrB mutant cells but much higher in uvrC mutant cells compared to wild-type cells. Pretreatment of the Atm-modified phage DNA with purified UVRA and UVRB significantly increases the transfectivity of the DNA in uvrA or uvrB mutant cells. This pretreatment greatly reduces the UVRABC nuclease-sensitive sites (UNSS) and Atm-induced absorbance at 343 nm in the Atm-modified DNA without producing apurinic sites. The reduction of UNSS is proportional to the concentrations of UVRA and UVRB and the enzyme-DNA incubation time and requires ATP. We conclude that there are two different mechanisms for repairing Atm-N2 guanine adducts by UVR proteins: (1) UVRA and UVRB bind to the Atm-N2 guanine double-stranded DNA region and consequently release the Atm from the adducted guanine; (2) UVRABC makes an incision at both sides of the Atm-DNA adduct. The latter mechanism produces potentially lethal double-strand DNA breaks in Atm-modified phi X174 RF DNA in vitro.


Assuntos
Adenosina Trifosfatases/metabolismo , Antramicina/química , Proteínas de Bactérias/metabolismo , Dano ao DNA , DNA Helicases , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli , Ácido Apurínico/química , DNA Bacteriano/química , DNA Viral/química , Endodesoxirribonucleases/metabolismo , Mutação , Espectrofotometria Ultravioleta , Transfecção
2.
Biochemistry ; 31(36): 8429-36, 1992 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-1390626

RESUMO

We have determined the role of the uvrA, uvrB, and uvrC genes in Escherichia coli cells in repairing DNA damage induced by three benzo[a]pyrene diol epoxide isomers. Using the phi X174 RF DNA-E. coli transfection system, we have found that BPDE-I or BPDE-II modified phi X174 RF DNA has much lower transfectivity in uvrA, uvrB, and uvrC mutant cells compared to wild type cells. In contrast, BPDE-III modification of phi X174 RF DNA causes much less difference in transfectivity between wild type and uvr- mutant cells. Moreover, BPDE-I and -II-DNA adducts are much more genotoxic than are BPDE-III-DNA adducts. Using purified UVRA, UVRB, and UVRC proteins, we have found that these three gene products, working together, incise both BPDE-I- and BPDE-III-DNA adducts quantitatively and, more importantly, at the same rate. In general, UVRABC nuclease incises on both the 5' (six to seven nucleotides) and 3' (four nucleotides) sides of BPDE-DNA adducts with similar efficiency with few exceptions. Quantitation of the UVRABC incision bands indicates that both of these BPDE isomers have different sequence selectivities in DNA binding. These results suggest that although UVR proteins can efficiently repair both BPDE-I- and BPDE-III-DNA adducts, in vivo the uvr system is the major excision mechanism for repairing BPDE-I-DNA adducts but may play a lesser role in repairing BPDE-III-DNA adducts. It is possible the low lethality of BPDE-III-DNA adducts is due to less complete blockage of DNA replication.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Adenosina Trifosfatases/farmacologia , Proteínas de Bactérias/farmacologia , Benzopirenos/farmacologia , DNA Helicases , Reparo do DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/farmacologia , Endodesoxirribonucleases , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Dano ao DNA , DNA Bacteriano/efeitos dos fármacos , Desoxirribonucleases/metabolismo , Isomerismo , Substâncias Macromoleculares , Dados de Sequência Molecular , Mutagênese , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA