Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 663: 227-237, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38401443

RESUMO

Outer membrane vesicle-functionalized nanoparticles (OMV-NPs) have attracted significant interest, especially regarding drug delivery applications and vaccines. Here, we report on novel OMV-NPs by applying bioorthogonal click reaction for encapsulating gold nanoparticles (NPs) within outer membrane vesicles (OMVs) by covalent coupling. For this purpose, outer membrane protein A (OmpA), abundant in large numbers (due to 100,000 copies/cell [1]) in OMVs, was modified via the incorporation of the unnatural amino acid p-azidophenylalanine. The azide group was covalently coupled to alkyne-functionalized NPs after incorporation into OmpA. A simplified procedure using low-speed centrifugation (1,000 x g) was developed for preparing OMV-NPs. The OMV-NPs were characterized by zeta potential, Laurdan-based lipid membrane dynamics studies, and the enzymatic activity of functionalized OMVs with surface-displayed nicotinamide adenine dinucleotide oxidase (Nox). In addition, OMVs from attenuated bacteria (ClearColiTM BL21(DE3), E. coli F470) with surface-displayed Nox or antibody fragments were prepared and successfully coupled to AuNPs. Finally, OMV-NPs displaying single-chain variable fragments from a monoclonal antibody directed against epidermal growth factor receptor were applied to demonstrate the feasibility of OMV-NPs for tumor cell targeting.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/metabolismo , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo
2.
Chem Sci ; 14(42): 11896-11906, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37920346

RESUMO

Being an essential multifunctional platform and interface to the extracellular environment, the cell membrane constitutes a valuable target for the modification and manipulation of cells and cellular behavior, as well as for the implementation of artificial, new-to-nature functionality. While bacterial cell surface functionalization via expression and presentation of recombinant proteins has extensively been applied, the corresponding application of functionalizable lipid mimetics has only rarely been reported. Herein, we describe an approach to equip E. coli cells with a lipid-mimicking, readily membrane-integrating imidazolium salt and a corresponding NHC-palladium complex that allows for flexible bacterial membrane surface functionalization and enables E. coli cells to perform cleavage of propargyl ethers present in the surrounding cell medium. We show that this approach can be combined with already established on-surface functionalization, such as bacterial surface display of enzymes, i.e. laccases, leading to a new type of cascade reaction. Overall, we envision the herein presented proof-of-concept studies to lay the foundation for a multifunctional toolbox that allows flexible and broadly applicable functionalization of bacterial membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA