Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(15): 2473-2484, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37162340

RESUMO

Growth hormone (GH) binding to GH receptor activates janus kinase 2 (JAK2)-signal transducer and activator of transcription 5b (STAT5b) pathway, which stimulates transcription of insulin-like growth factor-1 (IGF1), insulin-like growth factor binding protein 3 (IGFBP3) and insulin-like growth factor acid-labile subunit (IGFALS). Although STAT5B deficiency was established as an autosomal recessive disorder, heterozygous dominant-negative STAT5B variants have been reported in patients with less severe growth deficit and milder immune dysfunction. We developed an in vivo functional assay in zebrafish to characterize the pathogenicity of three human STAT5B variants (p.Ala630Pro, p.Gln474Arg and p.Lys632Asn). Overexpression of human wild-type (WT) STAT5B mRNA and its variants led to a significant reduction of body length together with developmental malformations in zebrafish embryos. Overexpression of p.Ala630Pro, p.Gln474Arg or p.Lys632Asn led to an increased number of embryos with pericardial edema, cyclopia and bent spine compared with WT STAT5B. Although co-injection of WT and p.Gln474Arg and WT and p.Lys632Asn STAT5B mRNA in zebrafish embryos partially or fully rescues the length and the developmental malformations in zebrafish embryos, co-injection of WT and p.Ala630Pro STAT5B mRNA leads to a greater number of embryos with developmental malformations and a reduction in body length of these embryos. These results suggest that these variants could interfere with endogenous stat5.1 signaling through different mechanisms. In situ hybridization of zebrafish embryos overexpressing p.Gln474Arg and p.Lys632Asn STAT5B mRNA shows a reduction in igf1 expression. In conclusion, our study reveals the pathogenicity of the STAT5B variants studied.


Assuntos
Fator de Transcrição STAT5 , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Hormônio do Crescimento , Transdução de Sinais/genética , RNA Mensageiro , Fator de Crescimento Insulin-Like I/genética
2.
Gen Comp Endocrinol ; 299: 113591, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32828812

RESUMO

Mammalian acid-labile subunit (ALS) is a serum protein that binds binary complexes between Insulin-like growth factors (IGFs) and Insulin-like growth factor-binding proteins (IGFBPs) extending their half-life and keeping them in the vasculature. Human ALS deficiency (ACLSD), due to homozygous or compound heterozygous mutations in IGFALS, leads to moderate short stature with reduced levels of IGF-I and IGFBP-3. There is only one corresponding zebrafish ortholog gene and it has not yet been studied. In this study we elucidate the role of igfals during zebrafish development. In zebrafish embryos igfals mRNA is expressed throughout development, mainly in the brain and subsequently also in the gut and swimbladder. To determine its role during development, we knocked down igfals gene product using morpholinos (MOs). Igfals morphant embryos displayed dorsalization in different degrees of severity, including a shortened trunk and loss of tail. Furthermore, co-injection of human IGFALS (hIGFALS) mRNA was able to rescue the MO-induced phenotype. Finally, overexpression of either hIGFALS or zebrafish igfals (zigfals) mRNA leads to ventralization of embryos including a reduced head and enlarged tail. These findings suggest that als plays an important role in dorso-ventral patterning during zebrafish development.


Assuntos
Proteínas de Transporte/metabolismo , Glicoproteínas/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Animais , Mutação
3.
Pediatr Endocrinol Rev ; 16(Suppl 1): 39-62, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30378782

RESUMO

The GH/IGF axis plays an important role in the control of pre and postnatal growth. At least 48 monogenic defects have been described affecting the production, secretion, and action of GH and IGFs. Molecular defects of the GH/IGF axis resulting in short stature were arbitrarily classified into 4 groups: 1. Combined pituitary hormone deficiency (CPHD) (a. syndromic CPHD and b. non-syndromic CPHD), 2. Isolated GH deficiency (IGHD), 3. GH insensitivity, and 4. IGF-I insensitivity. Genetic diagnosis is obtained in about 30-40% of children with growth retardation, severe IGHD, CPHD, apparent GH or IGF-I insensitivity, and small for gestational age. Increased accessibility to next generation sequencing (NGS) techniques resulted in a significant number of likely pathogenic variants in genes previously associated with short stature as well as in completely novel genes. Functional in vitro assays and in vivo animal models are required to determine the real contribution of these findings.


Assuntos
Nanismo Hipofisário , Hipopituitarismo , Mutação , Hormônio do Crescimento Humano , Humanos , Recém-Nascido Pequeno para a Idade Gestacional , Fator de Crescimento Insulin-Like I
4.
Clin Endocrinol (Oxf) ; 87(3): 300-311, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28445628

RESUMO

OBJECTIVE: Acid-labile subunit deficiency (ACLSD), caused by inactivating mutations in both IGFALS gene alleles, is characterized by marked reduction in IGF-I and IGFBP-3 levels associated with mild growth retardation. The aim of this study was to expand the known phenotype and genetic characteristics of ACLSD by reporting data from four index cases and their families. DESIGN: Auxological data, biochemical and genetic studies were performed in four children diagnosed with ACLSD and all available relatives. METHODS: Serum levels of IGF-I, IGFBP-3, acid-labile subunit (ALS), and in vitro ternary complex formation (ivTCF) were determined. After sequencing the IGFALS gene, pathogenicity of novel identified variants was evaluated by in vitro expression in transfected Chinese hamster ovarian (CHO) cells. ALS protein was detected in patients' sera and CHO cells conditioned media and lysates by Western immunoblot (WIB). RESULTS: Four index cases and four relatives were diagnosed with ACLSD. The following variants were found: p.Glu35Glyfs*17, p.Glu35Lysfs*87, p.Leu213Phe, p.Asn276Ser, p.Leu409Phe, p.Ala475Val and p.Ser490Trp. ACLSD patients presented low IGF-I and low or undetectable levels of IGFBP-3 and ALS. Seven out of 8 patients did not form ivTCF. CONCLUSIONS: This study confirms previous findings in ACLSD, such as the low IGF-I and a more severe reduction in IGFBP-3 levels, and a gene dosage effect observed in heterozygous carriers (HC). In addition, father-to-son transmission (father compound heterozygous and mother HC), preservation of male fertility, and marginal ALS expression with potential involvement in preserved responsiveness to rhGH treatment, are all novel aspects, not previously reported in this condition.


Assuntos
Glicoproteínas/deficiência , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Fator de Crescimento Insulin-Like I/análise , Adolescente , Adulto , Idoso , Animais , Proteínas de Transporte/genética , Criança , Pré-Escolar , Cricetulus , Família , Feminino , Fertilidade , Variação Genética , Glicoproteínas/genética , Transtornos do Crescimento/genética , Heterozigoto , Humanos , Lactente , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/deficiência , Fator de Crescimento Insulin-Like I/deficiência , América Latina , Masculino , Pessoa de Meia-Idade , Mutação , Transfecção , Adulto Jovem
5.
J Clin Endocrinol Metab ; 108(6): 1355-1369, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-36546343

RESUMO

CONTEXT: Insulin-like growth factor (IGF)1 gene mutations are extremely rare causes of pre- and postnatal growth retardation. Phenotype can be heterogenous with varying degrees of neurosensory deafness, cognitive defects, glucose metabolism impairment and short stature. OBJECTIVE: This study describes a 12.6-year-old girl presenting with severe short stature and insulin resistance, but with normal hearing and neurological development at the lower limit of normal. METHODS: DNA was obtained from the proband and both parents for whole exome sequencing (WES). In silico analysis was performed to predict the impact of the IGF1 variant on IGF1 and insulin receptors (IGF1R and IR) signaling. Phosphorylation of the IGF1R at activating Tyr residues and cell proliferation analyses were used to assess the ability of each subject's IGF1 to bind and activate IGF1R. RESULTS: The proband had low immunoreactive IGF1 in serum and WES revealed a novel homozygous IGF1 missense variant (c.247A>T), causing a change of serine 83 for cysteine (p.Ser83Cys; p.Ser35Cys in mature peptide). The proband's parents were heterozygous for this mutation. In silico analyses indicated the pathogenic potential of the variant with electrostatic variations with the potential of hampering the interaction with the IGF1R but strengthening the binding to IR. The mutant IGF1 protein had a significantly reduced activity on in vitro bioassays. CONCLUSION: We describe a novel IGF1 mutation leading to severe loss of circulating IGF1 immunoreactivity and bioactivity. In silico modeling predicts that the mutant IGF1 could interfere with IR signaling, providing a possible explanation for the severe insulin resistance observed in the patient. The absence of significant hearing and neurodevelopmental involvement in the present case is unusual and broadens the clinical spectrum of IGF1 mutations.


Assuntos
Nanismo , Resistência à Insulina , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Resistência à Insulina/genética , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Mutação , Mutação de Sentido Incorreto , Nanismo/genética , Fenótipo
7.
BMC Pediatr ; 11: 66, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21771322

RESUMO

BACKGROUND: Children born small for gestational age (SGA) experience higher rates of morbidity and mortality than those born appropriate for gestational age. In Latin America, identification and optimal management of children born SGA is a critical issue. Leading experts in pediatric endocrinology throughout Latin America established working groups in order to discuss key challenges regarding the evaluation and management of children born SGA and ultimately develop a consensus statement. DISCUSSION: SGA is defined as a birth weight and/or birth length greater than 2 standard deviations (SD) below the population reference mean for gestational age. SGA refers to body size and implies length-weight reference data in a geographical population whose ethnicity is known and specific to this group. Ideally, each country/region within Latin America should establish its own standards and make relevant updates. SGA children should be evaluated with standardized measures by trained personnel every 3 months during year 1 and every 6 months during year 2. Those without catch-up growth within the first 6 months of life need further evaluation, as do children whose weight is ≤ -2 SD at age 2 years. Growth hormone treatment can begin in SGA children > 2 years with short stature (< -2.0 SD) and a growth velocity < 25th percentile for their age, and should continue until final height (a growth velocity below 2 cm/year or a bone age of > 14 years for girls and > 16 years for boys) is reached. Blood glucose, thyroid function, HbA1c, and insulin-like growth factor-1 (IGF-1) should be monitored once a year. Monitoring insulin changes from baseline and surrogates of insulin sensitivity is essential. Reduced fetal growth followed by excessive postnatal catch-up in height, and particularly in weight, should be closely monitored. In both sexes, gonadal function should be monitored especially during puberty. SUMMARY: Children born SGA should be carefully followed by a multidisciplinary group that includes perinatologists, pediatricians, nutritionists, and pediatric endocrinologists since 10% to 15% will continue to have weight and height deficiency through development and may benefit from growth hormone treatment. Standards/guidelines should be developed on a country/region basis throughout Latin America.


Assuntos
Transtornos do Crescimento/tratamento farmacológico , Recém-Nascido Pequeno para a Idade Gestacional/crescimento & desenvolvimento , Pré-Escolar , Diabetes Mellitus Tipo 2/etiologia , Relação Dose-Resposta a Droga , Dislipidemias/etiologia , Feminino , Transtornos do Crescimento/complicações , Transtornos do Crescimento/etiologia , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Hiperandrogenismo/etiologia , Hipertensão/etiologia , Hipoglicemiantes/uso terapêutico , Lactente , Recém-Nascido de Baixo Peso , Recém-Nascido , Resistência à Insulina , América Latina/epidemiologia , Masculino , Metformina/uso terapêutico , Puberdade , Valores de Referência , Fatores de Risco
8.
Cells ; 10(8)2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34440832

RESUMO

Heritability accounts for over 80% of adult human height, indicating that genetic variability is the main determinant of stature. The rapid technological development of Next-Generation Sequencing (NGS), particularly Whole Exome Sequencing (WES), has resulted in the characterization of several genetic conditions affecting growth and development. The greatest challenge of NGS remains the high number of candidate variants identified. In silico bioinformatic tools represent the first approach for classifying these variants. However, solving the complicated problem of variant interpretation requires the use of experimental approaches such as in vitro and, when needed, in vivo functional assays. In this review, we will discuss a rational approach to apply to the gene variants identified in children with growth and developmental defects including: (i) bioinformatic tools; (ii) in silico modeling tools; (iii) in vitro functional assays; and (iv) the development of in vivo models. While bioinformatic tools are useful for a preliminary selection of potentially pathogenic variants, in vitro-and sometimes also in vivo-functional assays are further required to unequivocally determine the pathogenicity of a novel genetic variant. This long, time-consuming, and expensive process is the only scientifically proven method to determine causality between a genetic variant and a human genetic disease.


Assuntos
Biologia Computacional/métodos , Nanismo/genética , Variação Genética , Fator de Crescimento Insulin-Like I/genética , Transdução de Sinais/genética , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Variações do Número de Cópias de DNA , Nanismo/patologia , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Arch Argent Pediatr ; 119(5): e420-e427, 2021 10.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-34569743

RESUMO

INTRODUCTION: McCune-Albright syndrome (MAS) is a genetic disorder defined by fibrous dysplasia of bone, café-au-lait skin spots, and autonomous hyperfunction of one or more endocrine organs. MAS is caused by activating mutations of the GNAS1 gene. The most frequent type of endocrinopathy is gonadal endocrinopathy in the form of peripheral precocious puberty. OBJECTIVE: To describe the clinical characteristics, laboratory and imaging tests at the time of diagnosis and over the course of the disease, focusing on the classical triad of MAS. POPULATION AND METHODS: Observational, descriptive, retrospective clinical study of patients with MAS seen at the Department of Endocrinology of Hospital de Niños Ricardo Gutiérrez between 1974 and 2019. RESULTS: Twelve girls are described, all of whom developed peripheral precocious puberty (PPP) secondary to functional ovarian cysts. Their age at presentation was early (2.6 ± 1.3 years). Gonadotropin levels were suppressed or in the prepubertal range with generally high estradiol levels. Ten girls had café-au-lait skin spots since birth. During the course of disease, polyostotic fibrous dysplasia was detected in all patients. The treatments used to reduce ovarian cyst recurrence and hyperestrogenism effects showed varied effectiveness. CONCLUSIONS: In this series, the onset of PPP helped to make an early diagnosis of MAS and was difficult to treat. The course of disease showed persistent gonadal hyperfunction and worsening of bone injuries.


Introducción. El síndrome de McCune-Albright (SMA) es un trastorno genético caracterizado por displasia ósea fibrosa, manchas cutáneas color "café con leche" e hiperfunción autónoma de uno o varios órganos endocrinos. El SMA es producido por mutaciones activadoras del gen GNAS1. La endocrinopatía más frecuente es la gonadal, que se manifiesta como pubertad precoz periférica. Objetivo. Describir las características clínicas y los estudios de laboratorio e imágenes en el momento del diagnóstico y a lo largo de la evolución de la enfermedad, con énfasis en la tríada clásica del síndrome. Población y métodos. Estudio clínico observacional, descriptivo, retrospectivo de las historias clínicas de pacientes con SMA de la División de Endocrinología del Hospital de Niños Ricardo Gutiérrez desde 1974 hasta 2019. Resultados. Se presentan 12 niñas. Todas tuvieron pubertad precoz periférica (PPP) secundaria a quistes ováricos funcionantes. La edad de presentación fue temprana (2,6 ± 1,3 años). Los niveles de gonadotrofinas estuvieron suprimidos o en rango prepuberal con niveles de estradiol generalmente elevados. Diez niñas tuvieron manchas "café con leche" desde el nacimiento. Durante la evolución se detectó displasia fibrosa poliostótica en todas las pacientes. Los tratamientos utilizados para disminuir la recurrencia de los quistes ováricos y los efectos del hiperestrogenismo mostraron diferente eficacia. Conclusiones. En esta serie, la aparición de PPP contribuyó al diagnóstico temprano del SMA y fue de difícil tratamiento. En la evolución persistió la hiperfunción gonadal y empeoraron las lesiones óseas.


Assuntos
Displasia Fibrosa Poliostótica , Puberdade Precoce , Manchas Café com Leite/diagnóstico , Manchas Café com Leite/terapia , Feminino , Displasia Fibrosa Poliostótica/complicações , Displasia Fibrosa Poliostótica/diagnóstico , Displasia Fibrosa Poliostótica/terapia , Seguimentos , Humanos , Recidiva Local de Neoplasia , Puberdade Precoce/diagnóstico , Puberdade Precoce/etiologia , Puberdade Precoce/terapia , Estudos Retrospectivos
10.
FASEB J ; 23(3): 709-19, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18952711

RESUMO

Serum insulin-like growth factor (IGF) -1 is secreted mainly by the liver and circulates bound to IGF-binding proteins (IGFBPs), either as binary complexes or ternary complexes with IGFBP-3 or IGFBP-5 and an acid-labile subunit (ALS). The purpose of this study was to genetically dissect the role of IGF-1 circulatory complexes in somatic growth, skeletal integrity, and metabolism. Phenotypic comparisons of controls and four mouse lines with genetic IGF-1 deficits-liver-specific IGF-1 deficiency (LID), ALS knockout (ALSKO), IGFBP-3 (BP3) knockout, and a triply deficient LID/ALSKO/BP3 line-produced several novel findings. 1) All deficient strains had decreased serum IGF-1 levels, but this neither predicted growth potential or skeletal integrity nor defined growth hormone secretion or metabolic abnormalities. 2) IGF-1 deficiency affected development of both cortical and trabecular bone differently, effects apparently dependent on the presence of different circulating IGF-1 complexes. 3) IGFBP-3 deficiency resulted in increased linear growth. In summary, each IGF-1 complex constituent appears to play a distinct role in determining skeletal phenotype, with different effects on cortical and trabecular bone compartments.


Assuntos
Densidade Óssea/fisiologia , Metabolismo dos Carboidratos/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Animais , Composição Corporal , Densidade Óssea/genética , Osso e Ossos/anatomia & histologia , Osso e Ossos/fisiologia , Metabolismo dos Carboidratos/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/deficiência , Fator de Crescimento Insulin-Like I/genética , Masculino , Camundongos , Camundongos Knockout , Mutação , Aumento de Peso
11.
Pediatr Endocrinol Rev ; 7(4): 339-46, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20679994

RESUMO

The acid-labile subunit (ALS) protein is a key component of the circulating 150-kDa IGF ternary complex. The main role of ALS is the extension of IGF-I half life by protecting it from degradation and preventing the passage of IGF-I to the extravascular compartment. In humans, complete ALS deficiency is characterized by severe reduction of IGF-I and IGFBP-3 that remain low after GH treatment, associated with mild growth retardation, much less pronounced than the IGF-I deficit. Pubertal delay in boys and insulin insensitivity are common findings. At least 21 patients with ALS deficiency have been described presenting 16 different homozygous or compound heterozygous inactivating mutations of the IGFALS gene. Although the effect of ALS deficiency on prenatal growth is still uncertain, postnatal growth is clearly affected, with the majority of the patients presenting a height between -2 to -3 SDS before and during puberty. In the assessment of a child with short stature ALS deficiency should be considered in those patients presenting: 1) a normal response to GH stimulation test, 2) low IGF-I levels associated with more profoundly reduced IGFBP-3 levels, 3) a mild growth retardation, apparently out of proportion to the degree of IGF-I and IGFBP-3 deficits, 4) lack of response to an IGF generation test and 5) insulin insensitivity. The relatively mild growth retardation in relation to the severe IGF-I deficit might be related to the preserved autocrine/paracrine action of locally produced IGF-I. The observation that in families of ALS deficient patients, heterozygous carriers for IGFALS gene mutations are shorter than their wild type relatives and the relatively high frequency of heterozygosity for this gene in children with idiopathic short stature suggests a requirement of normal levels of ALS for the attainment of maximal growth potential.


Assuntos
Glicoproteínas/deficiência , Transtornos do Crescimento/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/deficiência , Fator de Crescimento Insulin-Like I/deficiência , Animais , Estatura , Peso Corporal , Osso e Ossos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Criança , Glicoproteínas/genética , Glicoproteínas/metabolismo , Transtornos do Crescimento/genética , Humanos , Resistência à Insulina , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos
12.
Mol Cell Endocrinol ; 518: 111006, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32861700

RESUMO

Acid-labile subunit (ALS) deficiency (ACLSD) constitutes the first monogenic defect involving a member of the Insulin-like Growth Factor (IGF) binding protein system. The lack of ALS completely disrupts the circulating IGF system. Autocrine/paracrine action of local produced IGF-I could explain the mild effect on growth. In the present work we have revised the more relevant clinical and biochemical consequences of complete ACLSD in 61 reported subjects from 31 families. Low birth weight and/or length, reduced head circumference, height between -2 and -3 SD, pubertal delay and insulin resistance are commonly observed. Partial ACLSD could be present in children initially labeled as idiopathic short stature, presenting low IGF-I levels, suggesting that one functional IGFALS allele is insufficient to stabilize ternary complexes. Dysfunction of the GH-IGF axis observed in ACLSD may eventually result in increased risk for type-2 diabetes and tumor progression. Consequently, long term surveillance is recommended in these patients.


Assuntos
Proteínas de Transporte/fisiologia , Glicoproteínas/fisiologia , Hormônio do Crescimento Humano/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Estatura/efeitos dos fármacos , Estatura/genética , Proteínas de Transporte/genética , Proteínas de Transporte/farmacologia , Criança , Feminino , Glicoproteínas/deficiência , Glicoproteínas/genética , Glicoproteínas/farmacologia , Transtornos do Crescimento/genética , Transtornos do Crescimento/metabolismo , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Masculino , Puberdade Tardia/genética , Puberdade Tardia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
13.
Growth Horm IGF Res ; 50: 61-70, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31902742

RESUMO

BACKGROUND: The most frequent monogenic causes of growth hormone insensitivity (GHI) include defects in genes encoding the GH receptor itself (GHR), the signal transducer and activator of transcription (STAT5B), the insulin like-growth factor type I (IGF1) and the acid-labile subunit (IGFALS). GHI is characterized by a continuum of mild to severe post-natal growth failure. OBJECTIVE: To characterize the molecular defect in a patient with short stature and partial GHI. PATIENT AND METHODS: The boy was born at term adequate for gestational age from non-consanguineous normal-stature parents. At 2.2 years, he presented proportionate short stature (height -2.77 SDS), wide forehead and normal mental development. Whole-exome analysis and functional characterization (site-directed mutagenesis, dual luciferase reporter assay, immunofluorescence and western immunoblot) were performed. RESULTS: Biochemical and endocrinological evaluation revealed partial GH insensitivity with normal stimulated GH peak (7.8 ng/mL), undetectable IGF1 and low IGFBP3 levels. Two heterozygous variants in the GH-signaling pathway were found: a novel heterozygous STAT5B variant (c.1896G>T, p.K632N) and a hypomorphic IGFALS variant (c.1642C>T, p.R548W). Functional in vitro characterization demonstrated that p.K632N-STAT5b is an inactivating variant that impairs STAT5b activity through abolished phosphorylation. Remarkably, the patient's immunological evaluation displayed only a mild hypogammaglobulinemia, while a major characteristic of STAT5b deficient patients is severe immunodeficiency. CONCLUSIONS: We reported a novel pathogenic inactivating STAT5b variant, which may be associated with partial GH insensitivity and can present without severe immunological complications in heterozygous state. Our results contribute to expand the spectrum of phenotypes associated to GHI.


Assuntos
Agamaglobulinemia/genética , Síndrome de Laron/genética , Fator de Transcrição STAT5/genética , Agamaglobulinemia/imunologia , Pré-Escolar , Heterozigoto , Hormônio do Crescimento Humano/metabolismo , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Síndrome de Laron/imunologia , Síndrome de Laron/metabolismo , Síndrome de Laron/fisiopatologia , Masculino , Testes de Função Hipofisária , Mutação Puntual , Índice de Gravidade de Doença
14.
Growth Horm IGF Res ; 50: 23-26, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31835104

RESUMO

OBJECTIVE: to describe the marked variability in clinical and biochemical patterns that are associated with a p.R209H GH1 missense variant in a large Argentinean pedigree, which makes the diagnosis of GHD elusive. DESIGN: We describe a non-consanguineous pedigree composed by several individuals with short stature, including 2 pediatric patients with typical diagnosis of isolated growth hormone deficiency (IGHD) and 4 other siblings with severe short stature, low serum IGF-1 and IGFBP-3, but normal stimulated GH levels, suggesting growth hormone insensitivity (GHI) in the latter group. RESULTS: Patients with classical IGHD phenotype carried a heterozygous variant in GH1: c.626G>A (p.R209H). Data from the extended pedigree suggested GH1 as the initial candidate gene, which showed the same pathogenic heterozygous GH1 variant in the four siblings with short stature and a biochemical pattern of GHI. CONCLUSIONS: We suggest considering GH1 sequencing in children with short stature associated to low IGF-1 and IGFBP-3 serum levels, even in the context of normal response to growth hormone provocative testing (GHPT).


Assuntos
Estatura , Nanismo Hipofisário/genética , Hormônio do Crescimento Humano/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Argentina , Criança , Pré-Escolar , Técnicas de Diagnóstico Endócrino , Nanismo Hipofisário/metabolismo , Nanismo Hipofisário/fisiopatologia , Feminino , Transtornos do Crescimento/genética , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/fisiopatologia , Heterozigoto , Homozigoto , Hormônio do Crescimento Humano/metabolismo , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
15.
Horm Res ; 72(3): 129-41, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19729943

RESUMO

The majority of insulin-like growth factor (IGF)-I and IGF-II circulate in the serum as a complex with the insulin-like growth factor binding protein (IGFBP)-3 or IGFBP-5, and an acid-labile subunit (ALS). The function of ALS is to prolong the half-life of the IGF-I-IGFBP-3/IGFBP-5 binary complexes. Fourteen different mutations of the human IGFALS gene have been identified in 17 patients, suggesting that ALS deficiency may be prevalent in a subset of patients with extraordinarily low serum levels of IGF-I and IGFBP-3 that remain abnormally low upon growth hormone stimulation. Postnatal growth was clearly affected. Commonly, the height standard deviation score before puberty was between -2 and -3, and approximately 1.4 SD shorter than the midparental height SDS. Pubertal delay was found in 50% of the patients. Circulating IGF-II, IGFBP-1, -2 and -3 levels were reduced, with the greatest reduction observed for IGFBP-3. Insulin insensitivity was a common finding, and some patients presented low bone mineral density. Human ALS deficiency represents a unique condition in which the lack of ALS proteins results in the disruption of the entire IGF circulating system. Despite a profound circulating IGF-I deficiency, there is only a mild impact on postnatal growth. The preserved expression of locally produced IGF-I might be responsible for the preservation of linear growth near normal limits.


Assuntos
Glicoproteínas/deficiência , Adolescente , Adulto , Animais , Peso ao Nascer , Estatura/genética , Osso e Ossos/metabolismo , Calcificação Fisiológica , Metabolismo dos Carboidratos , Proteínas de Transporte/genética , Criança , Pré-Escolar , Feminino , Mutação da Fase de Leitura , Glicoproteínas/genética , Humanos , Recém-Nascido , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto
16.
Rev Paul Pediatr ; 37(4): 520-524, 2019.
Artigo em Inglês, Português | MEDLINE | ID: mdl-31166470

RESUMO

OBJECTIVE: To describe the case of a patient with central congenital hypothyroidism (CCH) due to a recurrent mutation in the TSHB gene, as well as to conduct a genetic study of his family. CASE DESCRIPTION: It is presented a case report of a 5-month-old boy with a delayed diagnosis of isolated CCH in whom the molecular analysis was performed 12 years later and detected a recurrent mutation (c.373delT) in TSHB gene. The parents and sister were carriers of the mutant allele. COMMENTS: The c.373delT mutation has previously been reported in patients from Brazil, Germany, Belgium, United States, Switzerland, Argentina, France, Portugal, United Kingdom and Ireland. In summary, our case and other ones reported in the literature support the theory that this mutation may be a common cause of isolated TSH deficiency. Isolated TSH deficiency is not detected by routine TSH-based neonatal screening, representing a clinical challenge. Therefore, when possible, molecular genetic study is indicated. Identification of affected and carriers allows the diagnosis, treatment and adequate genetic counseling.


Assuntos
Hipotireoidismo Congênito/diagnóstico , Diagnóstico Tardio , Mutação , Triagem Neonatal , Tireotropina Subunidade beta/genética , Adulto , Criança , Hipotireoidismo Congênito/genética , Feminino , Marcadores Genéticos , Humanos , Lactente , Recém-Nascido , Masculino
17.
Eur J Endocrinol ; 181(5): K43-K53, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31539878

RESUMO

BACKGROUND: IGF1 is a key factor in fetal and postnatal growth. To date, only three homozygous IGF1 gene defects leading to complete or partial loss of IGF1 activity have been reported in three short patients born small for gestational age. We describe the fourth patient with severe short stature presenting a novel homozygous IGF1 gene mutation. RESULTS: We report a boy born from consanguineous parents at 40 weeks of gestational age with intrauterine growth restriction and severe postnatal growth failure. Physical examination revealed proportionate short stature, microcephaly, facial dysmorphism, bilateral sensorineural deafness and mild global developmental delay. Basal growth hormone (GH) fluctuated from 0.2 to 29 ng/mL, while IGF1 levels ranged from -1.15 to 2.95 SDS. IGFBP3 was normal-high. SNP array delimited chromosomal regions of homozygosity, including 12q23.2 where IGF1 is located. IGF1 screening by HRM revealed a homozygous missense variant NM_000618.4(IGF1):c.322T>C, p.(Tyr108His). The change of the highly conserved Tyr60 in the mature IGF1 peptide was consistently predicted as pathogenic by multiple bioinformatic tools. Tyr60 has been described to be critical for IGF1 interaction with type 1 IGF receptor (IGF1R). In vitro, HEK293T cells showed a marked reduction of IGF1R phosphorylation after stimulation with serum from the patient as compared to sera from age-matched controls. Mutant IGF1 was also less efficient in inducing cell growth. CONCLUSION: The present report broadens the spectrum of clinical and biochemical presentation of homozygous IGF1 defects and underscores the variability these patients may present depending on the IGF/IGF1R pathway activity.


Assuntos
Transtornos do Crescimento/genética , Perda Auditiva Neurossensorial/genética , Fator de Crescimento Insulin-Like I/deficiência , Mutação de Sentido Incorreto/genética , Anormalidades Múltiplas/genética , Proliferação de Células , Biologia Computacional , Simulação por Computador , Retardo do Crescimento Fetal/genética , Células HEK293 , Homozigoto , Humanos , Lactente , Fator de Crescimento Insulin-Like I/genética , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Tirosina/genética
18.
Growth Horm IGF Res ; 38: 19-23, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29249625

RESUMO

While insensitivity to GH (GHI) is characterized by low IGF-I levels, normal or elevated GH levels, and lack of IGF-I response to GH treatment, IGF-I resistance is characterized by elevated IGF-I levels with normal/high GH levels. Several genetic defects are responsible for impairment of GH and IGF-I actions resulting in short stature that could affect intrauterine growth or be present in the postnatal period. The genetic defects affecting GH and/or IGF-I action can be divided into five different groups: GH insensitivity by defects affecting the GH receptor (GHR), the intracellular GH signaling pathway (STAT5B, STAT3, IKBKB, IL2RG, PIK3R1), the synthesis of insulin-like growth factors (IGF1, IGF2), the transport/bioavailability of IGFs (IGFALS, PAPPA2), and defects affecting IGF-I sensitivity (IGF1R). Complete GH insensitivity (GHI) was first reported by Zvi Laron and his colleagues in patients with classical appearance of GH deficiency, but presenting elevated levels of GH. The association of GH insensitivity with several clinical sings of immune-dysfunction and autoimmune dysregulation are characteristic of molecular defects in the intracellular GH signaling pathway (STAT5B, STAT3, IKBKB, IL2RG, PIK3R1). Gene mutations in the IGF1 and IGF2 genes have been described in patients presenting intrauterine growth retardation and postnatal short stature. Molecular defects have also been reported in the IGFALS gene, that encodes the acid-labile subunit (ALS), responsible to stabilize circulating IGF-I in ternary complexes, and more recently in the PAPPA2 gen that encodes the pregnancy-associated plasma protein-A2, a protease that specifically cleaves IGFBP-3 and IGFBP-5 regulating the accessibility of IGFs to their target tissues. Mutations in the IGF1R gene resulted in IGF-I insensitivity in patients with impaired intrauterine and postnatal growth. These studies have revealed novel molecular mechanisms of GH insensitivity/primary IGF-I deficiency beyond the GH receptor gene. In addition, they have also underlined the importance of several players of the GH-IGF axis in the complex system that promotes human growth.


Assuntos
Marcadores Genéticos , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/genética , Hormônio do Crescimento Humano/deficiência , Transdução de Sinais , Transtornos do Crescimento/metabolismo , Humanos
19.
Case Rep Pediatr ; 2018: 5902835, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850346

RESUMO

By definition, about 2.5% of children show a short stature due to several causes. Two clinical conditions are characterized by serum IGF-I low levels, idiopathic GH deficiency (IGHD), and GH insensitivity (GHI), and the phenotypic appearance of these patients may be very similar. We studied two children with short stature and similar phenotypes. The first case showed frontal bossing, doll face, acromicria, and truncal obesity, with a GH peak <0.05 ng/ml after stimuli and undetectable serum IGF-I levels. After PCR amplification of the whole GH1 gene, type IA idiopathic GHD was diagnosed. The second case had cranium hypoplasia, a large head, protruding forehead, saddle nose, underdeveloped mandible, and a micropenis. Basal GH levels were high (28.4 ng/ml) while serum IGF-I levels were low and unchangeable during the IGF-I generation test. Laron syndrome was confirmed after the molecular analysis of the GH receptor (GHR) gene. IGHD type IA and Laron syndrome is characterized by opposite circulating levels of GH, while both have reduced levels of IGF-I, with an overlapping clinical phenotype, lacking the effects of IGF-I on cartilage. These classical cases show the importance of differential diagnosis in children with severe short stature.

20.
Mol Cell Endocrinol ; 473: 166-177, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29378236

RESUMO

Germinal heterozygous activating STAT3 mutations represent a novel monogenic defect associated with multi-organ autoimmune disease and, in some cases, severe growth retardation. By using whole-exome sequencing, we identified two novel STAT3 mutations, p.E616del and p.C426R, in two unrelated pediatric patients with IGF-I deficiency and immune dysregulation. The functional analyses showed that both variants were gain-of-function (GOF), although they were not constitutively phosphorylated. They presented differences in their dephosphorylation kinetics and transcriptional activities under interleukin-6 stimulation. Both variants increased their transcriptional activities in response to growth hormone (GH) treatment. Nonetheless, STAT5b transcriptional activity was diminished in the presence of STAT3 GOF variants, suggesting a disruptive role of STAT3 GOF variants in the GH signaling pathway. This study highlights the broad clinical spectrum of patients presenting activating STAT3 mutations and explores the underlying molecular pathway responsible for this condition, suggesting that different mutations may drive increased activity by slightly different mechanisms.


Assuntos
Células Germinativas/metabolismo , Transtornos do Crescimento/genética , Perda Auditiva Neurossensorial/genética , Doenças do Sistema Imunitário/genética , Fator de Crescimento Insulin-Like I/deficiência , Mutação/genética , Fator de Transcrição STAT3/genética , Sequência de Aminoácidos , Pré-Escolar , Feminino , Células HEK293 , Hormônio do Crescimento Humano/farmacologia , Humanos , Lactente , Recém-Nascido , Fator de Crescimento Insulin-Like I/genética , Interleucina-5/metabolismo , Luciferases/metabolismo , Masculino , Modelos Moleculares , Fosforilação/efeitos dos fármacos , Multimerização Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Transcrição Gênica/efeitos dos fármacos , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA