Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32041712

RESUMO

Combination therapy is an attractive therapeutic option for extensively drug-resistant (XDR) Pseudomonas aeruginosa infections. Colistin has been the only treatment available for these infections for many years, but its results are suboptimal. Ceftolozane-tazobactam (C/T) is a newly available therapeutic option that has shown good antipseudomonal activity, even against a number of XDR P. aeruginosa strains. However, data about combinations containing C/T are scarce. The aim of this study was to analyze the activity of C/T and colistin alone and in combination against a collection of XDR P. aeruginosa strains containing 24 representative clinical isolates from a multicentre Spanish study. Twenty-four time-kill experiments performed over 24 h were conducted in duplicate to determine the effects of colistin and C/T alone and combined. An in vitro pharmacodynamic chemostat model then was used to validate this combination against three selected XDR P. aeruginosa ST175 isolates with different susceptibility levels to C/T. Static time-kill assays demonstrated superior synergistic or additive effect for C/T plus colistin against 21 of the 24 isolates studied. In the in vitro dynamic pharmacokinetic/pharmacodynamic (PK/PD) model, the C/T regimen of 2/1 g every 8 h with a steady-state concentration of 2 mg/liter colistin effectively suppressed the bacterial growth at 24 h. Additive or synergistic interactions were observed for C/T plus colistin against XDR P. aeruginosa strains and particularly against C/T-resistant strains. C/T plus colistin may be a useful treatment for XDR P. aeruginosa infections, including those caused by high risk-clones resistant to C/T.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Colistina/farmacologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Tazobactam/farmacologia , Antibacterianos/farmacocinética , Cefalosporinas/farmacocinética , Colistina/farmacocinética , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Modelos Biológicos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/crescimento & desenvolvimento , Tazobactam/farmacocinética , Resistência beta-Lactâmica/efeitos dos fármacos
2.
Microbiol Spectr ; 10(3): e0089222, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35695526

RESUMO

The aim of this study was to compare the efficacy of intermittent (1-h), extended (4-h), and continuous ceftolozane-tazobactam (C/T) infusion against three extensively drug-resistant (XDR) sequence type (ST) 175 P. aeruginosa isolates with different susceptibilities to C/T (MIC = 2 to 16 mg/L) in a 7-day hollow-fiber infection model (HFIM). C/T in continuous infusion achieved the largest reduction in total number of bacterial colonies in the overall treatment arms for both C/T-susceptible and -resistant isolates. It was also the only regimen with bactericidal activity against all three isolates. These data suggest that continuous C/T infusion should be considered a potential treatment for infections caused by XDR P. aeruginosa isolates, including nonsusceptible ones. Proper use of C/T dosing regimens may lead to better clinical management of XDR P. aeruginosa infections. IMPORTANCE Ceftolozane-tazobactam (C/T) is an antipseudomonal antibiotic with a high clinical impact in treating infection caused by extensively drug-resistant (XDR) Pseudomonas aeruginosa isolates, but resistance is emerging. Given its time-dependent behavior, C/T continuous infusion can improve exposure and therefore the pharmacokinetic/pharmacodynamic target attainment. We compared the efficacy of intermittent, extended, and continuous C/T infusion against three XDR ST175 P. aeruginosa isolates with different C/T MICs by means of an in vitro dynamic hollow-fiber model. We demonstrated that C/T in continuous infusion achieved the largest reduction in bacterial density in the overall treatment arms for both susceptible and resistant isolates. It was also the only regimen with bactericidal activity against all three isolates. Through this study, we want to demonstrate that developing individually tailored antimicrobial treatments is becoming essential. Our results support the role of C/T level monitoring and of dose adjustments for better clinical management and outcomes.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Tazobactam/farmacologia , Tazobactam/uso terapêutico
3.
Microbiol Spectr ; 10(4): e0065122, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35876574

RESUMO

Time-kill curves are used to study antibiotic combinations, but the colony count method to obtain the results is time-consuming. The aim of the study was to validate an ATP assay as an alternative to the conventional colony count method in studies of antibiotic combinations. The cutoff point for synergy and bactericidal effect to categorize the results using this alternative method were determined in Pseudomonas aeruginosa. The ATP assay was performed using the GloMax 96 microplate luminometer (Promega), which measures bioluminescence in relative light units (RLU). To standardize this assay, background, linearity, and the detection limit were determined with one strain each of multidrug-resistant P. aeruginosa and Klebsiella pneumoniae. Twenty-four-hour time-kill curves were performed in parallel by both methods with 12 strains of P. aeruginosa. The conventional method was used as a "gold" standard to establish the pharmacodynamic cutoff points in the ATP method. Normal saline solution was established as washing/dilution medium. RLU signal correlated with CFU when the assay was performed within the linear range. The categorization of the pharmacodynamic parameters using the ATP assay was equivalent to that of the colony count method. The bactericidal effect and synergy cutoff points were 1.348 (93% sensitivity, 81% specificity) and 1.065 (95% sensitivity, 89% specificity) log RLU/mL, respectively. The ATP assay was useful to determine the effectiveness of antibiotic combinations in time-kill curves. This method, less laborious and faster than the colony count method, could be implemented in the clinical laboratory workflow. IMPORTANCE Combining antibiotics is one of the few strategies available to overcome infections caused by multidrug-resistant bacteria. Time-kill curves are usually performed to evaluate antibiotic combinations, but obtaining results is too laborious to be routinely performed in a clinical laboratory. Our results support the utility of an ATP measurement assay using bioluminescence to determine the effectiveness of antibiotic combinations in time-kill curves. This method may be implemented in the clinical laboratory workflow as it is less laborious and faster than the conventional colony count method. Shortening the obtention of results to 24 h would also allow an earlier guided combined antibiotic treatment.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Trifosfato de Adenosina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia
4.
Antibiotics (Basel) ; 11(11)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36358110

RESUMO

This study correlates in vivo findings in a patient with an extensively drug-resistant (XDR) P. aeruginosa infection who developed resistance to ceftazidime-avibactam (CAZ-AVI) with in vitro results of a 7-day hollow-fiber infection model (HFIM) testing the same bacterial strain. The patient was critically ill with ventilator-associated pneumonia caused by XDR P. aeruginosa ST175 with CAZ-AVI MIC of 6 mg/L and was treated with CAZ-AVI in continuous infusion at doses adjusted for renal function. Plasma concentrations of CAZ-AVI were analyzed on days 3, 7, and 10. In the HIFM, the efficacy of different steady-state concentrations (Css) of CAZ-AVI (12, 18, 30 and 48 mg/L) was evaluated. In both models, a correlation was observed between the decreasing plasma levels of CAZ-AVI and the emergence of resistance. In the HIFM, a Css of 30 and 48 mg/L (corresponding to 5× and 8× MIC) had a bactericidal effect without selecting resistant mutants, whereas a Css of 12 and 18 mg/L (corresponding to 2× and 3× MIC) failed to prevent the emergence of resistance. CAZ/AVI resistance development was caused by the selection of a single ampC mutation in both patient and HFIM. Until further data are available, strategies to achieve plasma CAZ-AVI levels at least 4× MIC could be of interest, particularly in severe and high-inoculum infections caused by XDR P. aeruginosa with high CAZ-AVI MICs.

5.
Sci Rep ; 11(1): 22178, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773066

RESUMO

Ceftolozane/tazobactam (C/T) has emerged as a potential agent for the treatment of extensively drug-resistant (XDR) Pseudomonas aeruginosa infections. As it is a time-dependent antimicrobial, prolonged infusion may help achieve pharmacokinetic/pharmacodynamic (PK/PD) targets. To compare alternative steady-state concentrations (Css) of C/T in continuous infusion (CI) against three XDR P. aeruginosa ST175 isolates with C/T minimum inhibitory concentration (MIC) values of 2 to 16 mg/L in a hollow-fiber infection model (HFIM). Duplicate 10-day HFIM assays were performed to evaluate Css of C/T in CI: one compared 20 and 45 mg/L against the C/T-susceptible isolate while the other compared 45 and 80 mg/L against the two C/T-non-susceptible isolates. C/T resistance emerged when C/T-susceptible isolate was treated with C/T in CI at a Css of 20 mg/L; which showed a deletion in the gene encoding AmpC ß-lactamase. The higher dosing regimen (80 mg/L) showed a slight advantage in effectiveness. The higher dosing regimen has the greatest bactericidal effect, regardless of C/T MIC. Exposure to the suboptimal Css of 20 mg/L led to the emergence of C/T resistance in the susceptible isolate. Antimicrobial regimens should be optimized through C/T levels monitoring and dose adjustments to improve clinical management.


Assuntos
Antibacterianos/administração & dosagem , Cefalosporinas/administração & dosagem , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Tazobactam/administração & dosagem , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Testes de Sensibilidade Microbiana/métodos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética
6.
Microbiol Spectr ; 9(1): e0058521, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34319141

RESUMO

Ceftazidime-avibactam (CZA) has emerged as a promising solution to the lack of new antibiotics against Pseudomonas aeruginosa infections. Data from in vitro assays of CZA combinations, however, are scarce. The objective of our study was to perform a time-kill analysis of the effectiveness of CZA alone and in combination with other antibiotics against a collection of extensively drug-resistant (XDR) P. aeruginosa isolates. Twenty-one previously characterized representative XDR P. aeruginosa isolates were selected. Antibiotic susceptibility was tested by broth microdilution, and results were interpreted using CLSI criteria. The time-kill experiments were performed in duplicate for each isolate. Antibiotics were tested at clinically achievable free-drug concentrations. Different treatment options, including CZA alone and combined with amikacin, aztreonam, meropenem, and colistin, were evaluated to identify the most effective combinations. Seven isolates were resistant to CZA (MIC ≥ 16/4 mg/liter), including four metallo-ß-lactamase (MBL)-carrying isolates and two class A carbapenemases. Five of them were resistant or intermediate to aztreonam (MIC ≥ 16 mg/liter). Three isolates were resistant to amikacin (MIC ≥ 64 mg/liter) and one to colistin (MIC ≥ 4 mg/liter). CZA monotherapy had a bactericidal effect in 100% (14/14) of the CZA-susceptible isolates. Combination therapies achieved a greater overall reduction in bacterial load than monotherapy for the CZA-resistant isolates. CZA plus colistin was additive or synergistic in 100% (7/7) of the CZA-resistant isolates, while CZA plus amikacin and CZA plus aztreonam were additive or synergistic in 85%. CZA combined with colistin, amikacin, or aztreonam was more effective than monotherapy against XDR P. aeruginosa isolates. A CZA combination could be useful for treating XDR P. aeruginosa infections, including those caused by CZA-resistant isolates. IMPORTANCE The emergence of resistance to antibiotics is a serious public health problem worldwide and can be a cause of mortality. For this reason, antibiotic treatment is compromised, and we have few therapeutic options to treat infections. The main goal of our study is to search for new treatment options for infections caused by difficult-to-treat resistant germs. Pseudomonas aeruginosa is a Gram-negative bacterium distributed throughout the world with the ability to become resistant to most available antibiotics. Ceftazidime-avibactam (CZA) emerged as a promising solution to the lack of new antibiotics against infections caused by P. aeruginosa strains. This study intended to analyze the effect of CZA alone or in combination with other available antibiotics against P. aeruginosa strains. The combination of CZA with other antibiotics could be more effective than monotherapy against extensively drug-resistant P. aeruginosa strains.


Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/química , Compostos Azabicíclicos/química , Ceftazidima/química , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla , Humanos , Cinética , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/crescimento & desenvolvimento
7.
J Glob Antimicrob Resist ; 18: 37-44, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31154007

RESUMO

BACKGROUND: Extensively drug-resistant (XDR) Pseudomonas aeruginosa (P. aeruginosa) and particularly P. aeruginosa high-risk clones, are of growing concern because treatment options are limited. For years, colistin monotherapy has been the only available treatment, but is well known that is not an optimal treatment. A combination of colistin with another antibiotic could be a possible therapeutic option. OBJECTIVES: This study aimed to investigate effective antibiotic combinations against 20 XDR P. aeruginosa isolates obtained in a Spanish multicentre study (2015). METHODS: Forty-five checkerboards with six antipseudomonal antibiotics (amikacin, aztreonam, ceftazidime, meropenem, colistin, and ceftolozane/tazobactam) were performed to determine whether combinations were synergic or additive by fractional inhibitory concentration indices. On average, 15 different regimens were evaluated in duplicate against the three most prevalent high-risk clones (ST175, ST235, ST111) by time-kill analyses over 24h. The combination showing synergism in the three high-risk clones was validated in all studied XDR isolates. RESULTS: In time-kill curves, the untreated control failed, as did each study regimen when administered alone. Two combinations were synergistic in the three high-risk clones that were initially studied: amikacin plus ceftazidime and colistin plus meropenem, with the second being the most effective combination. The efficacy of colistin plus meropenem was then tested in all 20 isolates. A synergistic bacterial density reduction for the duration of the study occurred in 80% of the entire XDR collection. CONCLUSIONS: These data suggest that colistin plus meropenem may be a useful combination for the treatment of infections due to XDR P. aeruginosa, including high-risk clones, which warrants evaluation in a clinical trial.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Meropeném/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA