Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 439(7078): 851-5, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16482158

RESUMO

Identification of the genes underlying complex phenotypes and the definition of the evolutionary forces that have shaped eukaryotic genomes are among the current challenges in molecular genetics. Variation in gene copy number is increasingly recognized as a source of inter-individual differences in genome sequence and has been proposed as a driving force for genome evolution and phenotypic variation. Here we show that copy number variation of the orthologous rat and human Fcgr3 genes is a determinant of susceptibility to immunologically mediated glomerulonephritis. Positional cloning identified loss of the newly described, rat-specific Fcgr3 paralogue, Fcgr3-related sequence (Fcgr3-rs), as a determinant of macrophage overactivity and glomerulonephritis in Wistar Kyoto rats. In humans, low copy number of FCGR3B, an orthologue of rat Fcgr3, was associated with glomerulonephritis in the autoimmune disease systemic lupus erythematosus. The finding that gene copy number polymorphism predisposes to immunologically mediated renal disease in two mammalian species provides direct evidence for the importance of genome plasticity in the evolution of genetically complex phenotypes, including susceptibility to common human disease.


Assuntos
Antígenos CD/genética , Dosagem de Genes/genética , Predisposição Genética para Doença/genética , Nefrite Lúpica/genética , Polimorfismo Genético/genética , Receptores de IgG/genética , Animais , Sequência de Bases , Éxons/genética , Proteínas Ligadas por GPI , Duplicação Gênica , Haplótipos , Humanos , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Dados de Sequência Molecular , Ratos , Ratos Endogâmicos WKY , Deleção de Sequência/genética
2.
FASEB J ; 24(6): 1824-37, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20061534

RESUMO

Phosphatidylinositide 3-kinases (PI3Ks) play central roles in insulin signal transduction. While the contribution of class Ia PI3K members has been extensively studied, the role of class II members remains poorly understood. The diverse actions of class II PI3K-C2alpha have been attributed to its lipid product PI(3)P. By applying pharmacological inhibitors, transient overexpression and small-interfering RNA-based knockdown of PI3K and PKB/Akt isoforms, together with PI-lipid profiling and live-cell confocal and total internal reflection fluorescence microscopy, we now demonstrate that in response to insulin, PI3K-C2alpha generates PI(3,4)P(2), which allows the selective activation of PKBalpha/Akt1. Knockdown of PI3K-C2alpha expression and subsequent reduction of PKBalpha/Akt1 activity in the pancreatic beta-cell impaired glucose-stimulated insulin release, at least in part, due to reduced glucokinase expression and increased AS160 activity. Hence, our results identify signal transduction via PI3K-C2alpha as a novel pathway whereby insulin activates PKB/Akt and thus discloses PI3K-C2alpha as a potential drugable target in type 2 diabetes. The high degree of codistribution of PI3K-C2alpha and PKBalpha/Akt1 with insulin receptor B type, but not A type, in the same plasma membrane microdomains lends further support to the concept that selectivity in insulin signaling is achieved by the spatial segregation of signaling events.


Assuntos
Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Edulcorantes/farmacologia , Androstadienos/farmacologia , Animais , Western Blotting , Membrana Celular/metabolismo , Células Cultivadas , Classe II de Fosfatidilinositol 3-Quinases , Imunofluorescência , Glucoquinase/metabolismo , Imunoprecipitação , Antagonistas da Insulina/farmacologia , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Lipídeos , Camundongos , Camundongos Obesos , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Receptor de Insulina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Wortmanina
3.
Biochem J ; 422(1): 53-60, 2009 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-19496756

RESUMO

Although the class II phosphoinositide 3-kinase enzymes PI3K-C2alpha and PI3K-C2beta act acutely downstream of cell surface receptors they have also been localized to nuclei in mammalian cells. As with the class I PI3K enzymes, the relationship between the pools of enzyme present in cytoplasm and nuclei remains poorly understood. In this study we test the hypothesis that PI3K-C2beta translocates to nuclei in response to growth factor stimulation. Fractionating homogenates of quiescent cells revealed that less than 5% of total PI3K-C2beta resides in nuclei. Stimulation with epidermal growth factor sequentially increased levels of this enzyme, firstly in the cytosol and secondly in the nuclei. Using detergent-treated nuclei, we showed that PI3K-C2beta co-localized with lamin A/C in the nuclear matrix. This was confirmed biochemically, and a phosphoinositide kinase assay showed a statistically significant increase in nuclear PI3K-C2beta levels and lipid kinase activity following epidermal growth factor stimulation. C-terminal deletion and point mutations of PI3K-C2beta demonstrated that epidermal growth factor-driven translocation to the nucleus is dependent on a sequence of basic amino acid residues (KxKxK) that form a nuclear localization motif within the C-terminal C2 domain. Furthermore, when this sequence was expressed as an EGFP (enhanced green fluorescent protein) fusion protein, it translocated fluorescence into nuclei with an efficiency dependent upon copy number. These data demonstrate that epidermal growth factor stimulates the appearance of PI3K-C2beta in nuclei. Further, this effect is dependent on a nuclear localization signal present within the C-terminal C2 domain, indicating its bimodal function regulating phospholipid binding and shuttling PI3K-C2beta into the nucleus.


Assuntos
Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Fator de Crescimento Epidérmico/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Classe II de Fosfatidilinositol 3-Quinases , Citosol/efeitos dos fármacos , Citosol/enzimologia , Proteínas de Fluorescência Verde , Humanos , Laminas/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Sinais de Localização Nuclear/metabolismo , Matriz Nuclear/efeitos dos fármacos , Matriz Nuclear/enzimologia , Fosfatidilinositol 3-Quinases/química , Transporte Proteico/efeitos dos fármacos
4.
Mol Biol Cell ; 16(10): 4841-51, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16055506

RESUMO

Neurotransmitter release and hormonal secretion are highly regulated processes culminating in the calcium-dependent fusion of secretory vesicles with the plasma membrane. Here, we have identified a role for phosphatidylinositol 3-kinase C2alpha (PI3K-C2alpha) and its main catalytic product, PtdIns3P, in regulated exocytosis. In neuroendocrine cells, PI3K-C2alpha is present on a subpopulation of mature secretory granules. Impairment of PI3K-C2alpha function specifically inhibits the ATP-dependent priming phase of exocytosis. Overexpression of wild-type PI3K-C2alpha enhanced secretion, whereas transfection of PC12 cells with a catalytically inactive PI3K-C2alpha mutant or a 2xFYVE domain sequestering PtdIns3P abolished secretion. Based on these results, we propose that production of PtdIns3P by PI3K-C2alpha is required for acquisition of fusion competence in neurosecretion.


Assuntos
Trifosfato de Adenosina/metabolismo , Exocitose/fisiologia , Neurossecreção/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Vesículas Secretórias/fisiologia , Glândulas Suprarrenais/citologia , Animais , Catecolaminas/metabolismo , Bovinos , Células Cultivadas , Células Cromafins/fisiologia , Classe II de Fosfatidilinositol 3-Quinases , Hormônio do Crescimento Humano/metabolismo , Humanos , Mutação , Fosfatidilinositol 3-Quinases/genética , Ratos
5.
Nephron Physiol ; 107(2): p45-56, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17804914

RESUMO

BACKGROUND: Platelet-derived growth factor (PDGF) is a potent activator of mesangial cell proliferation and migration. Although phosphoinositide 3-kinase (PI3K) enzymes are important downstream targets of the PDGF receptor, the contribution made by their 3-phosphoinositide products in the reorganization of actin cytoskeleton and focal adhesions has been questioned. METHODS AND RESULTS: Pharmacological inhibition of the PI3K activity blocks PDGF-induced migration of human primary mesangial cells using an in vitro scrape wound healing assay. Acute (<10 min) inhibition of the PI3K activity did not alter the effect of PDGF on either stress fibre dissolution or reorganization of focal adhesions. However, at later times (>30 min), PDGF-stimulated responses were inhibited. In contrast, PDGF-stimulated membrane ruffling remained insensitive to PI3K inhibitors throughout. Inhibition of protein kinase C and Erk also attenuated PDGF-stimulated mesangial cell migration; however, neither signaling pathway was responsible for the initial effects on filamentous actin and focal adhesions. CONCLUSIONS: We propose that following PDGF stimulation of mesangial cells, reorganization of the actin cytoskeleton occurs in a biphasic manner. The mechanism responsible for mesangial cell migration that occurs immediately following PDGF stimulation may serve to 'prime' for the subsequent 3-phosphoinositide-, protein-kinase-C-, and Erk-dependent migration.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Células Mesangiais/metabolismo , Fosfatos de Fosfatidilinositol/fisiologia , Fator de Crescimento Derivado de Plaquetas/fisiologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Movimento Celular/fisiologia , Células Cultivadas , Citoesqueleto/enzimologia , Humanos , Células Mesangiais/citologia , Células Mesangiais/enzimologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Serina-Treonina Quinases/metabolismo
6.
Neoplasia ; 5(2): 99-109, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12659682

RESUMO

In prostate cancer (PC), increasing evidence suggests that androgen receptor (AR) signalling is functional under conditions of maximal androgen blockade. PC cells survive and proliferate in the altered hormonal environment possibly by interactions between growth factor-activated pathways and AR signalling. The present review article summarizes the current evidence of this crosstalk and focuses on the interactions among the ErbB receptor network, its downstream pathways, and the AR. The potential role of this crosstalk in the development of androgen independence and in relation to antiandrogen therapy is discussed. Such interactions provide insight into possible complementary or additional strategies in the management of PC.


Assuntos
Androgênios/metabolismo , Proteínas Oncogênicas v-erbB/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Modelos Biológicos , Proteínas Oncogênicas v-erbB/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Receptores Androgênicos/metabolismo
7.
Neoplasia ; 6(6): 846-53, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15720812

RESUMO

Despite multiple reports of overexpression in prostate cancer (PC), the reliance of PC cells on activated epidermal growth factor receptor (EGFR) and its downstream signaling to phosphoinositide 3'-kinase/Akt (PI3K/Akt/PTEN) and/or mitogen-activated protein kinase (MAPK/ERK) pathways has not been fully elucidated. In this study, we compared the role of EGF-mediated signaling in nonmalignant (BPH-1, PNT1A, and PNT1B) and PC cell lines (DU145, PC3, LNCaP, and CWR22Rv1). EGF-induced proliferation was observed in all EGFR-expressing PC cells except PC3, indicating that EGFR expression does not unequivocally trigger proliferation following EGF stimulation. ErbB2 recruitment potentiated EGF-induced signals and was associated with the most pronounced effects of EGF despite low EGFR expression. In this way, the sum of EGFR and ErbB2 receptor phosphorylation proved to be a more sensitive indicator of EGF-induced proliferation than quantification of the expression of either receptor alone. Both Akt and ERK were rapidly phosphorylated in response to EGF, with ERK phosphorylation being the weakest in PC3 cells. Extrapolation of these findings to clinical PC suggests that assessment of phosphorylated EGFR + ErbB2 together could serve as a marker for sensitivity to anti-EGFR-targeted therapies.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Neoplasias da Próstata/metabolismo , Receptor ErbB-2/metabolismo , Western Blotting , Linhagem Celular Tumoral , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Humanos , Imunoprecipitação , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt
8.
BMC Clin Pathol ; 3(1): 4, 2003 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-14563213

RESUMO

BACKGROUND: Growth factor, cytokine and chemokine-induced activation of PI3K enzymes constitutes the start of a complex signalling cascade, which ultimately mediates cellular activities such as proliferation, differentiation, chemotaxis, survival, trafficking, and glucose homeostasis. The PI3K enzyme family is divided into 3 classes; class I (subdivided into IA and IB), class II (PI3K-C2alpha, PI3K-C2beta and PI3K-C2gamma) and class III PI3K. Expression of these enzymes in human tissue has not been clearly defined. METHODS: In this study, we analysed the immunohistochemical topographical expression profile of class IA (anti-p85 adaptor) and class II PI3K (PI3K-C2alpha and PI3K-C2beta) enzymes in 104 formalin-fixed, paraffin embedded normal adult human (age 33-71 years, median 44 years) tissue specimens including those from the gastrointestinal, genitourinary, hepatobiliary, endocrine, integument and lymphoid systems. Antibody specificity was verified by Western blotting of cell lysates and peptide blocking studies. Immunohistochemistry intensity was scored from undetectable to strong. RESULTS: PI3K enzymes were expressed in selected cell populations of epithelial or mesenchymal origin. Columnar epithelium and transitional epithelia were reactive but mucous secreting and stratified squamous epithelia were not. Mesenchymal elements (smooth muscle and endothelial cells) and glomerular epithelium were only expressed PI3K-C2alpha while ganglion cells expressed p85 and PI3K-C2beta. All three enzymes were detected in macrophages, which served as an internal positive control. None of the three PI3K isozymes was detected in the stem cell/progenitor compartments or in B lymphocyte aggregates. CONCLUSIONS: Taken together, these data suggest that PI3K enzyme distribution is not ubiquitous but expressed selectively in fully differentiated, non-proliferating cells. Identification of the normal in vivo expression pattern of class IA and class II PI3K paves the way for further analyses which will clarify the role played by these enzymes in inflammatory, neoplastic and other human disease conditions.

9.
Int J Inflam ; 2013: 980327, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23710416

RESUMO

Intraplaque hemorrhage causes adaptive remodelling of macrophages towards a protective phenotype specialized towards handling iron and lipid overload, denoted Mhem. The Mhem phenotype expresses elevated levels of hemoglobin (Hb) scavenger receptor, CD163, capable of endocytosing pro-oxidant free Hb complexed to acute phase protein haptoglobin (Hp). It is notable that individuals homozygous for the Hp 2 allele (a poorer antioxidant) are at increased risk of cardiovascular disease compared to the Hp 1 allele. In this study, we examined whether scavenging of polymorphic Hp:Hb complexes differentially generated downstream anti-inflammatory signals in cultured human macrophages culminating in interleukin (IL)-10 secretion. We describe an anti-inflammatory signalling pathway involving phosphatidylinositol-3-kinase activation upstream of Akt phosphorylation (pSer473Akt) and IL-10 secretion. The pathway is mediated specifically through CD163 and is blocked by anti-CD163 antibody or phagocytosis inhibitor. However, levels of pSer473Akt and IL-10 were significantly diminished when scavenging polymorphic Hp2-2:Hb complexes compared to Hp1-1:Hb complexes (P < 0.05). Impaired anti-inflammatory macrophage signaling through a CD163/pAkt/IL-10 axis may thus represent a possible Hp2-2 disease mechanism in atherosclerosis.

10.
Diabetes ; 61(9): 2280-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22586581

RESUMO

CCN2, a secreted profibrotic protein, is highly expressed in diabetic nephropathy (DN) and implicated in its pathogenesis; however, the actions of CCN2 in DN remain elusive. We previously demonstrated that CCN2 triggers signaling via tropomyosin receptor kinase A (TrkA). Trace expression of TrkA is found in normal kidneys, but its expression is elevated in several nephropathies; yet its role in DN is unexplored. In this study we show de novo expression of TrkA in human and murine DN. We go on to study the molecular mechanisms leading to TrkA activation and show that it involves hypoxia, as demonstrated by ischemia-reperfusion injury and in vitro experiments mimicking hypoxia, implicating hypoxia as a common pathway leading to disease. We also expose renal cells to hyperglycemia, which led to TrkA phosphorylation in mesangial cells, tubular epithelial cells, and podocytes but not in glomerular endothelial cells and renal fibroblasts. In addition, we report that hyperglycemia caused an induction of phosphorylated extracellular signal-related kinase 1/2 and Snail1 that was abrogated by silencing of TrkA or CCN2 using small interfering RNA. In conclusion, we provide novel evidence that TrkA is activated in diabetic kidneys and suggest that anti-TrkA therapy may prove beneficial in DN.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/fisiologia , Nefropatias Diabéticas/etiologia , Hiperglicemia/complicações , Animais , Fator de Crescimento do Tecido Conjuntivo/genética , Nefropatias Diabéticas/fisiopatologia , Humanos , Hiperglicemia/fisiopatologia , Hipóxia/complicações , Hipóxia/fisiopatologia , Rim/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Células Mesangiais/metabolismo , Camundongos , Fosforilação , RNA Interferente Pequeno/farmacologia , Receptor trkA/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição da Família Snail , Fatores de Transcrição/biossíntese
11.
Mol Cell Biol ; 31(1): 63-80, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20974805

RESUMO

An early lesion in many kidney diseases is damage to podocytes, which are critical components of the glomerular filtration barrier. A number of proteins are essential for podocyte filtration function, but the signaling events contributing to development of nephrotic syndrome are not well defined. Here we show that class II phosphoinositide 3-kinase C2α (PI3KC2α) is expressed in podocytes and plays a critical role in maintaining normal renal homeostasis. PI3KC2α-deficient mice developed chronic renal failure and exhibited a range of kidney lesions, including glomerular crescent formation and renal tubule defects in early disease, which progressed to diffuse mesangial sclerosis, with reduced podocytes, widespread effacement of foot processes, and modest proteinuria. These findings were associated with altered expression of nephrin, synaptopodin, WT-1, and desmin, indicating that PI3KC2α deficiency specifically impacts podocyte morphology and function. Deposition of glomerular IgA was observed in knockout mice; importantly, however, the development of severe glomerulonephropathy preceded IgA production, indicating that nephropathy was not directly IgA mediated. PI3KC2α deficiency did not affect immune responses, and bone marrow transplantation studies also indicated that the glomerulonephropathy was not the direct consequence of an immune-mediated disease. Thus, PI3KC2α is critical for maintenance of normal glomerular structure and function by supporting normal podocyte function.


Assuntos
Glomérulos Renais/anatomia & histologia , Glomérulos Renais/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Antígenos de Superfície/metabolismo , Transplante de Medula Óssea , Glomerulonefrite/etiologia , Glomerulonefrite/patologia , Glomerulonefrite/fisiopatologia , Glomerulonefrite por IGA/etiologia , Glomerulonefrite por IGA/patologia , Glomerulonefrite por IGA/fisiopatologia , Humanos , Imunoglobulina A/metabolismo , Imunoglobulina G/metabolismo , Glomérulos Renais/enzimologia , Glomérulos Renais/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Fosfatidilinositol 3-Quinases/deficiência , Fosfatidilinositol 3-Quinases/genética , Podócitos/enzimologia , Podócitos/patologia , Podócitos/fisiologia , Insuficiência Renal/etiologia , Insuficiência Renal/patologia , Insuficiência Renal/fisiopatologia , Quimeras de Transplante
12.
J Cell Biol ; 190(3): 307-15, 2010 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-20679431

RESUMO

Phosphatidylinositol (PI) 4,5-bisphosphate (PI(4,5)P(2)) and its phosphorylated product PI 3,4,5-triphosphate (PI(3,4,5)P(3)) are two major phosphoinositides concentrated at the plasma membrane. Their levels, which are tightly controlled by kinases, phospholipases, and phosphatases, regulate a variety of cellular functions, including clathrin-mediated endocytosis and receptor signaling. In this study, we show that the inositol 5-phosphatase SHIP2, a negative regulator of PI(3,4,5)P(3)-dependent signaling, also negatively regulates PI(4,5)P(2) levels and is concentrated at endocytic clathrin-coated pits (CCPs) via interactions with the scaffold protein intersectin. SHIP2 is recruited early at the pits and dissociates before fission. Both knockdown of SHIP2 expression and acute production of PI(3,4,5)P(3) shorten CCP lifetime by enhancing the rate of pit maturation, which is consistent with a positive role of both SHIP2 substrates, PI(4,5)P(2) and PI(3,4,5)P(3), on coat assembly. Because SHIP2 is a negative regulator of insulin signaling, our findings suggest the importance of the phosphoinositide metabolism at CCPs in the regulation of insulin signal output.


Assuntos
Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Endocitose , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Inositol Polifosfato 5-Fosfatases , Camundongos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases
13.
ChemMedChem ; 5(1): 130-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19950162

RESUMO

Imatinib is a clinically important ATP analogue inhibitor that targets the tyrosine kinase domain of the intracellular Abl kinase and the PDGF receptor family. Imatinib has revolutionised the treatment of chronic myeloid leukaemia, which is caused by the oncogene Bcr-Abl and certain solid tumours that harbor oncogenic mutations of the PDGF receptor family. As a leading kinase inhibitor, imatinib also provides an excellent model system to investigate how changes in drug design impact biological activity, which is an important consideration for rational drug design. Herein we report a new series of imatinib derivatives that in general have greater activity against the family of PDGF receptors and poorer activity against Abl, as a result of modifications of the phenyl and N-methylpiperazine rings. These new compounds provide a platform for further drug development against the therapeutically important PDGF receptor family and they also provide insight into the engineering of drugs with altered biological activity.


Assuntos
Antineoplásicos/química , Proteínas de Fusão bcr-abl/metabolismo , Piperazinas/química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-kit/metabolismo , Pirimidinas/química , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Benzamidas , Sítios de Ligação , Linhagem Celular Tumoral , Simulação por Computador , Desenho de Fármacos , Humanos , Mesilato de Imatinib , Células K562 , Camundongos , Fosforilação , Piperazinas/síntese química , Piperazinas/toxicidade , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/toxicidade , Pirimidinas/síntese química , Pirimidinas/toxicidade , Especificidade por Substrato
14.
J Clin Invest ; 120(5): 1469-78, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20407205

RESUMO

Crescentic glomerulonephritis (CGN), which frequently results in acute and chronic kidney disease, is characterized by and dependent on glomerular infiltration by macrophages. The mannose receptor (MR) is a pattern recognition receptor implicated in the uptake of endogenous and microbial ligands by macrophages, mesangial cells (MCs), and selected endothelial cells. It is upregulated on alternatively activated macrophages (i.e., macrophages associated with tissue repair and humoral immunity) and involved in antigen presentation to T cells. We used the mouse model of nephrotoxic nephritis to investigate the role of MR in CGN. Our results demonstrate what we believe to be a novel role for MR in the promotion of CGN that is independent of adaptive immune responses. MR-deficient (Mr-/-) mice were protected from CGN despite generating humoral and T cell responses similar to those of WT mice, but they demonstrated diminished macrophage and MC Fc receptor-mediated (FcR-mediated) functions, including phagocytosis and Fc-mediated oxygen burst activity. Mr-/- MCs demonstrated augmented apoptosis compared with WT cells, and this was associated with diminished Akt phosphorylation. Macrophage interaction with apoptotic MCs induced a noninflammatory phenotype that was more marked in Mr-/- macrophages than in WT macrophages. Our results demonstrate that MR augments Fc-mediated function and promotes MC survival. We suggest that targeting MR may provide an alternative therapeutic approach in CGN while minimizing the impact on adaptive immune responses, which are affected by conventional immunosuppressive approaches.


Assuntos
Regulação da Expressão Gênica , Glomerulonefrite/metabolismo , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Fc/metabolismo , Animais , Apoptose , Feminino , Macrófagos/metabolismo , Masculino , Receptor de Manose , Células Mesangiais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Oxigênio/metabolismo , Fagocitose , Fosforilação , Linfócitos T/metabolismo
15.
Mol Biol Cell ; 19(12): 5593-603, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18843041

RESUMO

Phosphatidylinositol-3-phosphate [PtdIns(3)P] is a key player in early endosomal trafficking and is mainly produced by class III phosphatidylinositol 3-kinase (PI3K). In neurosecretory cells, class II PI3K-C2alpha and its lipid product PtdIns(3)P have recently been shown to play a critical role during neuroexocytosis, suggesting that two distinct pools of PtdIns(3)P might coexist in these cells. However, the precise characterization of this additional pool of PtdIns(3)P remains to be established. Using a selective PtdIns(3)P probe, we have identified a novel PtdIns(3)P-positive pool localized on secretory vesicles, sensitive to PI3K-C2alpha knockdown and relatively resistant to wortmannin treatment. In neurosecretory cells, stimulation of exocytosis promoted a transient albeit large increase in PtdIns(3)P production localized on secretory vesicles sensitive to PI3K-C2alpha knockdown and expression of PI3K-C2alpha catalytically inactive mutant. Using purified chromaffin granules, we found that PtdIns(3)P production is controlled by Ca(2+). We confirmed that PtdIns(3)P production from recombinantly expressed PI3K-C2alpha is indeed regulated by Ca(2+). We provide evidence that a dynamic pool of PtdIns(3)P synthesized by PI3K-C2alpha occurs on secretory vesicles in neurosecretory cells, demonstrating that the activity of a member of the PI3K family is regulated by Ca(2+) in vitro and in living neurosecretory cells.


Assuntos
Cálcio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Vesículas Secretórias/metabolismo , Androstadienos/metabolismo , Animais , Bovinos , Linhagem Celular , Células Cromafins/citologia , Células Cromafins/metabolismo , Classe II de Fosfatidilinositol 3-Quinases , Exocitose/fisiologia , Humanos , Fosfatidilinositol 3-Quinases/genética , Inibidores de Proteínas Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Wortmanina
16.
Neoplasia ; 10(9): 949-53, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18714395

RESUMO

One limitation of current biochemical or histologic analysis of advanced prostate cancer (PC; T(3)/T(4) +/- N(x) M(x)) is the ability to identify on first diagnostic biopsy patients who will make a durable response to hormone ablation therapy. The aim of this study was to assess the predictive value (sustained response to hormonal therapy and clinical outcome (relapse-free and overall survival)) of phosphatase and tensin homolog (PTEN) and the androgen receptor (AR) immunoexpression in the presenting biopsy. Analysis was performed on 47 samples (10 cases of benign prostatic hyperplasia and 37 hormone-naive PCs). Patients selected represented two stages in the natural history of PC: The "clinical metastatic androgen-responsive" (androgen-dependent PC, ADPC) and the "clinical metastatic androgen-resistant" (androgen-independent PC, AIPC). Reduced immunoreactivity (IR) of either or both PTEN/AR in the initial hormone-naive PC samples was observed with increased frequency in AIPCs. In the ADPC group, low PTEN and/or AR-IR was associated with a shorter median relapse-free survival, i.e., at 30 months after surgery, the probability of relapse-free survival for high expressors of PTEN and AR was 85.7% (SEM = 9.3) compared with only 16.6% (SEM = 15.2) in low expressors. At 36 months, only 28.5% (SEM = 9.3) of ADPC high expressors had experienced a biochemical relapse compared with 100% of low expressors (hazard ratio, 4.6; 95% confidence interval, 4.7-146.8). Further studies analyzing the coexpression of PTEN and AR should be undertaken to validate this pilot study and the utility of these biomarkers in routine histopathologic workup of patients with PC.


Assuntos
Biomarcadores Tumorais/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Hiperplasia Prostática/genética , Neoplasias da Próstata/genética , Receptores Androgênicos/metabolismo , Idoso , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Valor Preditivo dos Testes , Recidiva , Estudos Retrospectivos
17.
Nat Genet ; 40(5): 553-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18443593

RESUMO

Crescentic glomerulonephritis is an important cause of human kidney failure for which the underlying molecular basis is largely unknown. In previous studies, we mapped several susceptibility loci, Crgn1-Crgn7, for crescentic glomerulonephritis in the Wistar Kyoto (WKY) rat. Here we show by combined congenic, linkage and microarray studies that the activator protein-1 (AP-1) transcription factor JunD is a major determinant of macrophage activity and is associated with glomerulonephritis susceptibility. Introgression of Crgn2 from the nonsusceptible Lewis strain onto the WKY background leads to significant reductions in crescent formation, macrophage infiltration, Fc receptor-mediated macrophage activation and cytokine production. Haplotype analysis restricted the Crgn2 linkage interval to a 430-kb interval containing Jund, which is markedly overexpressed in WKY macrophages and glomeruli. Jund knockdown in rat and human primary macrophages led to significantly reduced macrophage activity and cytokine secretion, indicating conservation of JunD function in macrophage activation in rats and humans and suggesting in vivo inhibition of Jund as a possible new therapeutic strategy for diseases characterized by inflammation and macrophage activation.


Assuntos
Predisposição Genética para Doença , Glomerulonefrite/genética , Ativação de Macrófagos/genética , Proteínas Proto-Oncogênicas c-jun/fisiologia , Ratos/genética , Fator de Transcrição AP-1/fisiologia , Animais , Animais Congênicos , Mapeamento Cromossômico , Expressão Gênica , Ligação Genética , Haplótipos , Humanos , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos Endogâmicos Lew , Ratos Endogâmicos WKY , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
18.
Mol Cell Biol ; 27(22): 7906-17, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17875942

RESUMO

While endocytosis attenuates signals from plasma membrane receptors, recent studies suggest that endocytosis also serves as a platform for the compartmentalized activation of cellular signaling pathways. Intersectin (ITSN) is a multidomain scaffolding protein that regulates endocytosis and has the potential to regulate various biochemical pathways through its multiple, modular domains. To address the biological importance of ITSN in regulating cellular signaling pathways versus in endocytosis, we have stably silenced ITSN expression in neuronal cells by using short hairpin RNAs. Decreasing ITSN expression dramatically increased apoptosis in both neuroblastoma cells and primary cortical neurons. Surprisingly, the loss of ITSN did not lead to major defects in the endocytic pathway. Yeast two-hybrid analysis identified class II phosphoinositide 3'-kinase C2beta (PI3K-C2beta) as an ITSN binding protein, suggesting that ITSN may regulate a PI3K-C2beta-AKT survival pathway. ITSN associated with PI3K-C2beta on a subset of endomembrane vesicles and enhanced both basal and growth factor-stimulated PI3K-C2beta activity, resulting in AKT activation. The use of pharmacological inhibitors, dominant negatives, and rescue experiments revealed that PI3K-C2beta and AKT were epistatic to ITSN. This study represents the first demonstration that ITSN, independent of its role in endocytosis, regulates a critical cellular signaling pathway necessary for cell survival.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sobrevivência Celular , Neurônios/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Endocitose/fisiologia , Ativação Enzimática , Fator de Crescimento Epidérmico/metabolismo , Epistasia Genética , Humanos , Camundongos , Dados de Sequência Molecular , Neurônios/citologia , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
19.
Am J Pathol ; 171(5): 1462-73, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17982125

RESUMO

Pancreatic secretory trypsin inhibitor (PSTI) is a serine protease inhibitor, expressed in gut mucosa, whose function is unclear. We, therefore, examined the effects of PSTI on gut stability and repair. Transgenic mice overexpressing human PSTI within the jejunum (FABPi(-1178 to +28) hPSTI construct) showed no change in baseline morphology or morphometry but reduced indomethacin-induced injury in overexpressing hPSTI region by 42% (P < 0.01). Systemic recombinant hPSTI did not affect baseline morphology or morphometry but truncated injurious effects in prevention and recovery rat models of dextran-sodium-sulfate-induced colitis. In vitro studies showed PSTI stimulated cell migration but not proliferation of human colonic carcinoma HT29 or immortalized mouse colonic YAMC cells. PSTI also induced changes in vectorial ion transport (short-circuit current) when added to basolateral but not apical surfaces of polarized monolayers of Colony-29 cells. Restitution and vectorial ion transport effects of PSTI were dependent on the presence of a functioning epidermal growth factor (EGF) receptor because cells with a disrupted (EGFR(-/-) immortalized cells) or neutralized (EGFR blocking antibodies or tyrosine kinase inhibitor) receptor prevented these effects. PSTI also reduced the cytokine release of lipopolysaccharide-stimulated dendritic cells. We conclude that administration of PSTI may provide a novel method of stabilizing intestinal mucosa against noxious agents and stimulating repair after injury.


Assuntos
Proteínas de Transporte/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Linhagem Celular , Movimento Celular , Proliferação de Células , Colite/induzido quimicamente , Colite/patologia , Colite/prevenção & controle , Células Dendríticas/fisiologia , Sulfato de Dextrana , Receptores ErbB/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Humanos , Indometacina , Mucosa Intestinal/fisiologia , Transporte de Íons , Doenças do Jejuno/induzido quimicamente , Doenças do Jejuno/metabolismo , Doenças do Jejuno/patologia , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Inibidor da Tripsina Pancreática de Kazal
20.
J Cell Physiol ; 206(3): 586-93, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16222711

RESUMO

The class II phosphoinositide 3-kinase (PI3K)-C2beta is recruited to polypeptide growth factor receptors following ligand stimulation. In contrast to the class I A p85/p110 heterodimers, this interaction is dependent upon proline residues present within the N-terminal sequence of the 3-phosphoinositide kinase. However, the mechanism by which PI3K-C2beta catalytic activity is regulated currently remains unknown. In many tumours, increased expression of ErbB receptors confers a poor prognosis. We demonstrate that increased expression of EGFR enhanced its association with PI3K-C2beta following stimulation with EGF. Deletion of the first proline rich region within the N-terminus precluded recruitment of PI3K-C2beta to activated EGFR. Although deletion of the first proline rich motif also rendered the enzyme catalytically inactive, further deletions (residues 1-148 and 1-261) that removed the second and third proline rich motifs increased kinase activity. These data confirm a regulatory role for the N-terminus of class II PI3K enzymes suggesting that catalytic activity is regulated by factors that associate with this region during recruitment to activated growth factor receptors. Using an N-terminal PI3K-C2beta-GST fusion protein, clathrin heavy chain was affinity purified from A431 cell lysates. Association of PI3K-C2beta with clathrin was confirmed by co-immunoprecipitation from cell lysates while intracellular co-localisation of PI3K-C2beta and clathrin was confirmed by confocal microscopy. Our findings demonstrate for the first time that the PI3K-C2beta isoform associates with clathrin and thus provides a link between receptor mediated intracellular signalling and clathrin coated vesicle transport.


Assuntos
Clatrina/metabolismo , Receptores ErbB/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Sítios de Ligação , Linhagem Celular , Cromatografia de Afinidade , Classe II de Fosfatidilinositol 3-Quinases , Proteína Adaptadora GRB2/metabolismo , Humanos , Lipídeos , Fosforilação , Fosfotransferases , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA