RESUMO
Chronic wounds, characterized by prolonged healing processes, pose a significant medical challenge with multifaceted aetiologies, including local and systemic factors. Here, it explores the complex pathogenesis of chronic wounds, emphasizing the disruption in the normal phases of wound healing, particularly the inflammatory phase, leading to an imbalance in extracellular matrix (ECM) dynamics and persistent inflammation. Senescent cell populations further contribute to impaired wound healing in chronic lesions. Traditional medical management focuses on addressing underlying causes, but many chronic wounds resist to conventional treatments, necessitating innovative approaches. Recent attention has turned to autologous orthobiologics, such as platelet-rich plasma (PRP), platelet-rich fibrin (PRF) and mesenchymal stem cells (MSCs), as potential regenerative interventions. These biologically derived materials, including bone marrow aspirate/concentrate (BMA/BMAC) and adipose tissue-derived stem cells (ADSCs), exhibit promising cytokine content and regenerative potential. MSCs, in particular, have emerged as key players in wound healing, influencing inflammation and promoting tissue regeneration. This paper reviews relevant scientific literature regarding basic science and brings real-world evidence regarding the use of orthobiologics in the treatment of chronic wounds, irrespective of aetiology. The discussion highlights the regenerative properties of PRP, PRF, BMA, BMAC and SVF, showcasing their potential to enhance wound healing. Despite advancements, further research is essential to elucidate the specific roles of each orthobiologic and determine optimal applications for different wound types. The conclusion underscores the evolving landscape in chronic wound management, with a call for more comprehensive studies to refine treatment strategies and maximize the benefits of regenerative medicine.
Assuntos
Tecido Adiposo , Citocinas , Humanos , Matriz Extracelular , Inflamação , CicatrizaçãoRESUMO
This study investigates the role of Sygen® in diabetic peripheral neuropathy, a severe disease that affects the peripheral nervous system in diabetic individuals. This disorder often impacts the lower limbs, causing significant discomfort and, if left untreated, progresses into more serious conditions involving chronic ulcers and even amputation in many cases. Although there are management strategies available, peripheral neuropathies are difficult to treat as they often present multiple causes, especially due to metabolic dysfunction in diabetic individuals. Gangliosides, however, have long been studied and appreciated for their role in neurological diseases. The monosialotetrahexosylganglioside (GM1) ganglioside, popularly known as Sygen, provides beneficial effects such as enhanced neuritic sprouting, neurotrophism, neuroprotection, anti-apoptosis, and anti-excitotoxic activity, being particularly useful in the treatment of neurological complications that arise from diabetes. This product mimics the roles displayed by neurotrophins, improving neuronal function and immunomodulation by attenuating exacerbated inflammation in neurons. Furthermore, Sygen assists in axonal stabilization and keeps nodal and paranodal regions of myelin fibers organized. This maintains an adequate propagation of action potentials and restores standard peripheral nerve function. Given the multifactorial nature of this complicated disorder, medical practitioners must carefully screen the patient to avoid confusion and misdiagnosis. There are several studies analyzing the role of Sygen in neurological disorders. However, the medical literature still needs more robust investigations such as randomized clinical trials regarding the administration of this compound for diabetic peripheral neuropathies, specifically.