Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(5): 485-495, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28185952

RESUMO

Lipids played a determinant role in the evolution of the brain. It is postulated that the morphological and functional diversity among neural cells of the human central nervous system (CNS) is projected and achieved through the expression of particular lipid profiles. The present study was designed to evaluate the differential vulnerability to oxidative stress mediated by lipids through a cross-regional comparative approach. To this end, we compared 12 different regions of CNS of healthy adult subjects, and the fatty acid profile and vulnerability to lipid peroxidation, were determined by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS), respectively. In addition, different components involved in PUFA biosynthesis, as well as adaptive defense mechanisms against lipid peroxidation, were also measured by western blot and immunohistochemistry, respectively. We found that: i) four fatty acids (18.1n-9, 22:6n-3, 20:1n-9, and 18:0) are significant discriminators among CNS regions; ii) these differential fatty acid profiles generate a differential selective neural vulnerability (expressed by the peroxidizability index); iii) the cross-regional differences for the fatty acid profiles follow a caudal-cranial gradient which is directly related to changes in the biosynthesis pathways which can be ascribed to neuronal cells; and iv) the higher the peroxidizability index for a given human brain region, the lower concentration of the protein damage markers, likely supported by the presence of adaptive antioxidant mechanisms. In conclusion, our results suggest that there is a region-specific vulnerability to lipid peroxidation and offer evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the human central nervous system.


Assuntos
Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Ácidos Graxos Insaturados/biossíntese , Lipídeos/isolamento & purificação , Estresse Oxidativo , Adipogenia/genética , Adulto , Autopsia , Encéfalo/patologia , Sistema Nervoso Central/química , Sistema Nervoso Central/patologia , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Peroxidação de Lipídeos , Lipídeos/efeitos adversos , Lipogênese/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/metabolismo , Neurônios/patologia
2.
Redox Biol ; 23: 101082, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30635167

RESUMO

The human brain is a target of the aging process like other cell systems of the human body. Specific regions of the human brain exhibit differential vulnerabilities to the aging process. Yet the underlying mechanisms that sustain the preservation or deterioration of neurons and cerebral functions are unknown. In this review, we focus attention on the role of lipids and the importance of the cross-regionally different vulnerabilities in human brain aging. In particular, we first consider a brief approach to the lipidomics of human brain, the relationship between lipids and lipoxidative damage, the role of lipids in human brain aging, and the specific targets of lipoxidative damage in human brain and during aging. It is proposed that the restricted set of modified proteins and the functional categories involved may be considered putative collaborative factors contributing to neuronal aging, and that mitochondrial ATP synthase is a key lipoxidative target in human brain aging.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Metabolismo dos Lipídeos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Oxirredução , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Biomarcadores , Encéfalo/patologia , Citoesqueleto/metabolismo , Metabolismo Energético , Humanos , Lipídeos/química , Neurônios/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transmissão Sináptica
3.
Exp Gerontol ; 111: 218-228, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30077575

RESUMO

Oxidative damage and inflammation coexist in healthy human brain aging. The present study analyzes levels of protein adduction by lipid peroxidation (LP) end-products neuroketal (NKT) and malondialdehyde (MDA), as markers of protein oxidative damage, cycloxygenase-2 (COX-2) levels, as a marker of inflammation, and cytochrome P450 2J2 (CYP2J2), responsible of generation of neuroprotective products, in twelve brain regions in normal middle-aged individuals (MA) and old-aged (OA) individuals. In addition, levels of these markers were evaluated as a function of age as a continuous variable and correction for multiple comparisons. Selection of regions was based on their different vulnerability to prevalent neurodegenerative diseases in aging. Our findings show region-dependent LP end-products, COX-2 and CYP2J2 changes in the aging human brain. However, no clear relationship can be established between NKT, MDA, COX-2 and CYP2J2 levels, and regional vulnerability to neurodegeneration in old age.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Peroxidação de Lipídeos , Estresse Oxidativo , Adulto , Idoso , Western Blotting , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Masculino , Malondialdeído/metabolismo , Pessoa de Meia-Idade
4.
Prion ; 12(3-4): 216-225, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30009661

RESUMO

Targeted expression of genes coding for proteins specific to astrocytes, oligodendrocytes and myelin was performed in frontal cortex area 8 of Creutzfeldt-Jakob disease methionine/methionine and valine/valine (CJD MM1 and VV2, respectively) compared with controls. GFAP (glial fibrillary acidic protein) mRNA was up-regulated whereas SLC1A2 (solute carrier family 1 member 2, coding for glutamate transporter 1: GLT1), AQ4 (aquaporin 4), MPC1 (mitochondrial pyruvate carrier 1) and UCP5 (mitochondrial uncoupled protein 5) mRNAs were significantly down-regulated in CJD MM1 and CJD VV2, and GJA1 (connexin 43) in CJD VV2. OLIG1 and OLIG2 (oligodendocyte transcription factor 1 and 2, respectively), SOX10 (SRY-Box10) and oligodendroglial precursor cell (OPC) marker NG2 (neuronal/glial antigen) 2 were preserved, but GALC (coding for galactosylceramidase), SLC2A1 (solute carrier family 2 member 1: glucose transporter member 1: GLUT1) and MCT1 (monocarboxylic acid transporter 1) mRNA expression levels were significantly reduced in CJD MM1 and CJD VV2. Expression levels of most genes linked to myelin were not altered in the cerebral cortex in CJD. Immunohistochemistry to selected proteins disclosed individual variations but GFAP, Olig-2, AQ4 and GLUT1 correlated with mRNA levels, whereas GLT1 was subjected to individual variations. However, MPC1, UCP5 and MCT1 decrease was more closely related to the respective reduced neuronal immunostaining. These observations support the idea that molecular deficits linked to energy metabolism and solute transport in astrocytes and oligodendrocytes, in addition to neurons, are relevant in the pathogenesis of cortical lesions in CJD.


Assuntos
Astrócitos/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Lobo Frontal/citologia , Oligodendroglia/metabolismo , Transcrição Gênica/genética , Astrócitos/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Transportador 2 de Aminoácido Excitatório , Lobo Frontal/patologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Humanos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Desacoplamento Mitocondrial/genética , Proteínas de Desacoplamento Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/patologia , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
J Gerontol A Biol Sci Med Sci ; 73(6): 703-710, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28958038

RESUMO

Fatty acids are key components in the structural diversity of lipids and play a strategic role in the functional properties of lipids which determine the structural and functional integrity of neural cell membranes, the generation of lipid signaling mediators, and the chemical reactivity of acyl chains. The present study analyzes the profile of lipid fatty acid composition of membranes of human frontal cortex area 8 in individuals ranging from 40 to 90 years old. Different components involved in polyunsaturated fatty acid biosynthesis pathways, as well as adaptive defense mechanisms involved in the lipid-mediated modulation of inflammation, are also assessed. Our results show that the lipid profile in human frontal cortex is basically preserved through the adult life span to decay at advanced ages, which is accompanied by an adaptive proactive anti-inflammatory response possibly geared to ensuring cell survival and function.


Assuntos
Envelhecimento/metabolismo , Ácidos Graxos/metabolismo , Lobo Frontal/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Cadáver , Cromatografia Gasosa , Humanos , Inflamação/metabolismo , Longevidade , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase
6.
Free Radic Biol Med ; 103: 14-22, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27979658

RESUMO

Human brain aging is the physiological process which underlies as cause of cognitive decline in the elderly and the main risk factor for neurodegenerative diseases such as Alzheimer's disease. Human neurons are functional throughout a healthy adult lifespan, yet the mechanisms that maintain function and protect against neurodegenerative processes during aging are unknown. Here we show that protein oxidative and glycoxidative damage significantly increases during human brain aging, with a breakpoint at 60 years old. This trajectory is coincident with a decrease in the content of the mitochondrial respiratory chain complex I-IV. We suggest that the deterioration in oxidative stress homeostasis during aging induces an adaptive response of stress resistance mechanisms based on the sustained expression of REST, and increased or decreased expression of Akt and mTOR, respectively, over the adult lifespan in order to preserve cell neural survival and function.


Assuntos
Envelhecimento , Lobo Frontal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Lobo Frontal/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Repressoras/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma
7.
Front Mol Neurosci ; 9: 138, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28008307

RESUMO

Brain neurons offer diverse responses to stresses and detrimental factors during development and aging, and as a result of both neurodegenerative and neuropsychiatric disorders. This multiplicity of responses can be ascribed to the great diversity among neuronal populations. Here we have determined the metabolomic profile of three healthy adult human brain regions-entorhinal cortex, hippocampus, and frontal cortex-using mass spectrometry-based technologies. Our results show the existence of a lessened energy demand, mitochondrial stress, and lower one-carbon metabolism (particularly restricted to the methionine cycle) specifically in frontal cortex. These findings, along with the better antioxidant capacity and lower mTOR signaling also seen in frontal cortex, suggest that this brain region is especially resistant to stress compared to the entorhinal cortex and hippocampus, which are more vulnerable regions. Globally, our results show the presence of specific metabolomics adaptations in three mature, healthy human brain regions, confirming the existence of cross-regional differences in cell vulnerability in the human cerebral cortex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA