Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(5): 1635-1641, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277778

RESUMO

We present an on-chip filter with a broad tailorable working wavelength and a single-mode operation. This is realized through the application of topological photonic crystal nanobeam filters employing synthesis parameter dimensions. By introducing the translation of air holes as a new synthetic parameter dimension, we obtained nanobeams with tunable Zak phases. Leveraging the bulk-edge correspondence, we identify the existence of topological cavity modes and establish a correlation between the cavity's interface morphology and working wavelength. Through experiments, we demonstrate filters with adjustable filtering wavelengths ranging from 1301 to 1570 nm. Our work illustrates the use of the synthetic translation dimension in the design of on-chip filters, and it holds potential for applications in other devices such as microcavities.

2.
Opt Lett ; 49(4): 1029-1032, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359234

RESUMO

Directional emission of electromagnetic waves plays an essential role in laser radar and free-space communication. For most directional antennas, bandwidth and miniaturization are a pair of contradictions due to their underlying interference mechanism. Connection-type metamaterials exhibit exotic electromagnetic response near zero-frequency, which relies on the global topology of mesh connectivity rather than resonance and thus has a broad working bandwidth. In this Letter, we investigate the broadband orientation-dependent coupling effect of a 3D double mesh metamaterial. Based on this effect, we achieve a broadband directional emission (relative bandwidth of 37.72%) using a compact structure (compared to twice working wavelength). Our work provides a novel, to the best of our knowledge, scheme to manipulate a long-wavelength wave and may pave the way to a miniaturized directional antenna.

3.
Phys Rev Lett ; 132(11): 113801, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563935

RESUMO

Manipulating radiation asymmetry of photonic structures is of particular interest in many photonic applications such as directional optical antenna, high efficiency on-chip lasers, and coherent light control. Here, we proposed a term of pseudopolarization to reveal the topological nature of radiation asymmetry in bilayer metagratings. Robust pseudopolarization vortex with an integer topological charge exists in P-symmetry metagrating, allowing for tunable directionality ranging from -1 to 1 in synthetic parameter space. When P-symmetry breaking, such vortex becomes pairs of C points due to the conservation law of charge, leading to the phase difference of radiation asymmetry from π/2 to 3π/2. Furthermore, topologically enabled coherent perfect absorption is robust with customized phase difference at will between two counterpropagating external light sources. This Letter can not only enrich the understanding of two particular topological photonic behaviors, i.e., bound state in the continuum and unidirectional guided resonance, but also provide a topological view on radiation asymmetry, opening an unexplored avenue for asymmetric light manipulation in on-chip laser, light-light switch, and quantum emitters.

4.
Opt Lett ; 48(11): 2825-2828, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262220

RESUMO

Recent theory has demonstrated that Kagome photonic crystals (PCs) support first-order and second-order topological phenomena. Here, we extend the topological physics of the Kagome lattice to surface electromagnetic waves and experimentally show a Kagome surface-wave PC. Under the protection of first-order and second-order topologies, both robust edge modes and in-gap corner modes are observed. The robust transport of edge modes is demonstrated by high transmission through the waveguide with a sharp bend. The localized corner mode is found at the corner with one isolated rod when a triangle-shaped sample is constructed. Our work not only shows a platform to mimic the topological physics in classical wave systems, but also offers a potential application in designing high-performance photonic devices.

5.
Opt Express ; 29(9): 13011-13024, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33985046

RESUMO

We present a physics-assisted artificial neural network (PhyANN) scheme to efficiently achieve focus shaping of high numerical aperture lens using a diffractive optical element (DOE) divided into a series of annular regions with fixed widths. Unlike the conventional ANN, the PhyANN does not require the training using labeled data, and instead output the transmission coefficients of each annular region of the DOE by fitting weights of networks to minimize the delicately designed loss function in term of focus profiles. Several focus shapes including sub-diffraction spot, flattop spot, optical needle, and multi-focus region are successfully obtained. For instance, we achieve an optical needle with 10λ depth of focus, 0.41λ lateral resolution beyond diffraction limit and high flatness of almost the same intensity distribution. Compared to typical particle swarm optimization algorithm, the PhyANN has an advantage in DOE design that generates three-dimensional focus profile. Further, the hyperparameters of the proposed PhyANN scheme are also discussed. It is expected that the obtained results benefit various applications including super-resolution imaging, optical trapping, optical lithography and so on.

6.
Cytotherapy ; 23(1): 57-64, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33218835

RESUMO

BACKGROUND AIMS: Stem cell transplantation is a potential treatment for intractable spinal cord injury (SCI), and allogeneic human umbilical cord mesenchymal stem cells (hUC-MSCs) are a promising candidate because of the advantages of immune privilege, paracrine effect, immunomodulatory function, convenient collection procedure and little ethical concern, and there is an urgent need to develop a safe and effective protocol regarding their clinical application. METHODS: A prospective, single-center, single-arm study in which subjects received four subarachnoid transplantations of hUC-MSCs (1 × 106 cells/kg) monthly and were seen in follow-up four times (1, 3, 6 and 12 months after final administration) was conducted. At each scheduled time point, safety and efficacy indicators were collected and analyzed accordingly. Adverse events (AEs) were used as a safety indicator. American Spinal Injury Association (ASIA) and SCI Functional Rating Scale of the International Association of Neurorestoratology (IANR-SCIFRS) total scores at the fourth follow-up were determined as primary efficacy outcomes, whereas these two indicators at the remaining time points as well as scores of pinprick, light touch, motor and sphincter, muscle spasticity and spasm, autonomic system, bladder and bowel functions, residual urine volume (RUV) and magnetic resonance imaging (MRI) were secondary efficacy outcomes. Subgroup analysis of primary efficacy indicators was also performed. RESULTS: Safety and efficacy assessments were performed on 102 and 41 subjects, respectively. Mild AEs involving fever (14.1%), headache (4.2%), transient increase in muscle tension (1.6%) and dizziness (1.3%) were observed following hUC-MSC transplantation and resolved thoroughly after conservative treatments. There was no serious AE. ASIA and IANR-SCIFRS total scores revealed statistical increases when compared with the baselines at different time points during the study, mainly reflected in the improvement of pinprick, light touch, motor and sphincter scores. Moreover, subjects showed a continuous and remarkable decrease in muscle spasticity. Regarding muscle spasm, autonomic system, bladder and bowel functions, RUV and MRI, data/imaging at final follow-up showed significant improvements compared with those at first collection. Subgroup analysis found that hUC-MSC transplantation improved neurological functions regardless of injury characteristics, including level, severity and chronicity. CONCLUSIONS: The authors' present protocol demonstrates that intrathecal administration of' allogeneic hUC-MSCs at a dose of 106 cells/kg once a month for 4 months is safe and effective and leads to significant improvement in neurological dysfunction and recovery of quality of life.


Assuntos
Células-Tronco Mesenquimais , Traumatismos da Medula Espinal/terapia , Cordão Umbilical/citologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Fatores Imunológicos/uso terapêutico , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Qualidade de Vida , Espaço Subaracnóideo/fisiopatologia , Adulto Jovem
7.
Phys Rev Lett ; 126(23): 230503, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34170155

RESUMO

Topological photonics has been introduced as a powerful platform for integrated optics, since it can deal with robust light transport, and be further extended to the quantum world. Strikingly, valley-contrasting physics in topological photonic structures contributes to valley-related edge states, their unidirectional coupling, and even valley-dependent wave division in topological junctions. Here, we design and fabricate nanophotonic topological harpoon-shaped beam splitters (HSBSs) based on 120-deg-bending interfaces and demonstrate the first on-chip valley-dependent quantum information process. Two-photon quantum interference, namely, Hong-Ou-Mandel interference with a high visibility of 0.956±0.006, is realized with our 50/50 HSBS, which is constructed by two topologically distinct domain walls. Cascading this kind of HSBS together, we also demonstrate a simple quantum photonic circuit and generation of a path-entangled state. Our work shows that the photonic valley state can be used in quantum information processing, and it is possible to realize more complex quantum circuits with valley-dependent photonic topological insulators, which provides a novel method for on-chip quantum information processing.

8.
Phys Rev Lett ; 122(23): 233902, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298874

RESUMO

Recently, higher-order topological phases that do not obey the usual bulk-edge correspondence principle have been introduced in electronic insulators and brought into classical systems, featuring in-gap corner or hinge states. In this Letter, using near-field scanning measurements, we show the direct observation of corner states in second-order topological photonic crystal slabs consisting of periodic dielectric rods on a perfect electric conductor. Based on the generalized two-dimensional Su-Schrieffer-Heeger model, we show that the emergence of corner states roots in the nonzero edge dipolar polarization instead of the nonzero bulk quadrupole polarization. We demonstrate the topological transition of two-dimensional Zak phases of photonic crystal slabs by tuning intracell distances between two neighboring rods. We also directly observe in-gap one-dimensional edge states and zero-dimensional corner states in the microwave regime. Our work presents that the photonic crystal slab is a powerful platform to directly observe topological states and paves the way to study higher-order photonic topological insulators.

9.
Nat Mater ; 16(3): 298-302, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27893722

RESUMO

Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

10.
Eur Spine J ; 27(8): 1925-1932, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222690

RESUMO

PURPOSE: Microendoscopy-assisted minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) is an advantageous method for treating lumbar degenerative disease; however, some patients show contralateral radiculopathy postoperatively. This study aims to investigate its risk factor. METHODS: A total of 130 cases who underwent microendoscopy-assisted MIS-TLIF at L4-5 level were divided into symptomatic and asymptomatic groups according to the presence of postoperative contralateral radiculopathy. Both preoperative and postoperative radiographic parameters, as well as their changes were compared between the two groups, including lumbar lordosis (LL), surgical segmental angle (SSA), disc height (DH), contralateral foramen area (CFA) and contralateral canal area (CCA). Screw breach on contralateral L4 pedicle and decompression method (ipsilateral or bilateral canal decompression through unilateral route) were also analyzed as potential risk factors. Receiver operating characteristic (ROC) curve was drawn for the risk factor to determine the optimal threshold for predicting postoperative contralateral radiculopathy. Besides, clinical outcome assessment, involving Visual Analog Score (VAS) for back and leg, Japanese Orthopaedics Association Score (JOA) and Oswestry Disability Index (ODI), was also compared between the two groups before surgery and at final follow-up (at least 3 months after the surgery for asymptomatic patients or final treatments of contralateral radiculopathy for symptomatic cases). RESULTS: Postoperative contralateral radiculopathy occurred in 11 (8.5%) of the 130 patients. Both preoperative and postoperative CFA as well as its change were significantly decreased in symptomatic group compared with asymptomatic group (all P < 0.05). For the remaining four parameters (LL, SSA, DH, CCA), their preoperative, postoperative and change values showed no statistical difference between the two groups (all P > 0.05). Neither screw breach nor decompression method revealed statistical association with this complication (both P > 0.05). Based on ROC curve, the optimal threshold of preoperative CFA was 0.76 cm2. At final follow-up, significant improvement in VAS (back and leg), JOA and ODI was observed in both groups compared with preoperative baseline (all P < 0.05), while no difference was found between the two groups (all P > 0.05). CONCLUSIONS: Preoperative contralateral foramen stenosis is the risk factor of contralateral radiculopathy following microendoscopy-assisted MIS-TLIF. If preoperative CFA at L4-5 level is not larger than 0.76 cm2, prophylactic measures, including both indirect and direct decompression of contralateral foramen, are recommended.


Assuntos
Vértebras Lombares/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos/efeitos adversos , Complicações Pós-Operatórias/etiologia , Radiculopatia/etiologia , Fusão Vertebral/efeitos adversos , Idoso , Parafusos Ósseos/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Estudos Retrospectivos , Fatores de Risco , Doenças da Coluna Vertebral/cirurgia , Fusão Vertebral/métodos , Resultado do Tratamento
11.
J Environ Sci (China) ; 57: 293-311, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28647250

RESUMO

Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide. However, the application of CW for wastewater treatment in frigid climate presents special challenges. Wetland treatment of wastewater relies largely on biological processes, and reliable treatment is often a function of climate conditions. To date, the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate. This paper therefore highlights the practice and applications of treatment wetlands in cold climate. A comprehensive review of the effectiveness of contaminant removal in different wetland systems including: (1) free water surface (FWS) CWs; (2) subsurface flow (SSF) CWs; and (3) hybrid wetland systems, is presented. The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants. The strategies of wetland design and operation for performance intensification, such as the presence of plant, operational mode, effluent recirculation, artificial aeration and in-series design, which are crucial to achieve the sustainable treatment performance in cold climate, are also discussed. This study is conducive to further research for the understanding of CW design and treatment performance in cold climate.


Assuntos
Recuperação e Remediação Ambiental/métodos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Áreas Alagadas , Clima Frio
12.
Opt Lett ; 41(10): 2209-12, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27176964

RESUMO

Magnetic mirrors exhibit predominant physical characteristics such as high surface impedance and strong near-field enhancement. However, there is no way to implement these materials on a silicon lab chip. Here, we propose a scheme for an in-plane magnetic mirror in a silicon-based photonic crystal with a high-impedance surface, in contrast to the previous electric mirrors with low surface impedance. A tortuous bending waveguide with zero-index core and magnetic mirror walls is designed that exhibits high transmission and zero phase change at the waveguide exit. This type of magnetic mirror opens the door to exploring the physics of high-impedance surfaces and applications in integrated photonics.

13.
Opt Express ; 23(15): 19066-73, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367569

RESUMO

Quality of holographic reconstruction image is seriously affected by undesirable messy fringes in polygon-based computer generated holography. Here, several methods have been proposed to improve the image quality, including a modified encoding method based on spatial-domain Fraunhofer diffraction and a specific LED light source. Fast Fourier transform is applied to the basic element of polygon and fringe-invisible reconstruction is achieved after introducing initial random phase. Furthermore, we find that the image with satisfactory fidelity and sharp edge can be reconstructed by either a LED with moderate coherence level or a modulator with small pixel pitch. Satisfactory image quality without obvious speckle noise is observed under the illumination of bandpass-filter-aided LED. The experimental results are consistent well with the correlation analysis on the acceptable viewing angle and the coherence length of the light source.

14.
Phys Rev Lett ; 114(16): 163901, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25955050

RESUMO

It is recognized that for a certain class of periodic photonic crystals, conical dispersion can be related to a zero-refractive index. It is not obvious whether such a notion can be extended to a noncrystalline system. We show that certain photonic quasicrystalline approximants have conical dispersions at the zone center with a triply degenerate state at the Dirac frequency, which is the necessary condition to qualify as a zero-refractive-index medium. The states in the conical dispersions are extended and have a nearly constant phase. Experimental characterizations of finite-sized samples show evidence that the photonic quasicrystals do behave as a near zero-refractive-index material around the Dirac frequency.

15.
Light Sci Appl ; 13(1): 166, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009583

RESUMO

3-dB couplers, which are commonly used in photonic integrated circuits for on-chip information processing, precision measurement, and quantum computing, face challenges in achieving robust performance due to their limited 3-dB bandwidths and sensitivity to fabrication errors. To address this, we introduce topological physics to nanophotonics, developing a framework for topological 3-dB couplers. These couplers exhibit broad working wavelength range and robustness against fabrication dimensional errors. By leveraging valley-Hall topology and mirror symmetry, the photonic-crystal-slab couplers achieve ideal 3-dB splitting characterized by a wavelength-insensitive scattering matrix. Tolerance analysis confirms the superiority on broad bandwidth of 48 nm and robust splitting against dimensional errors of 20 nm. We further propose a topological interferometer for on-chip distance measurement, which also exhibits robustness against dimensional errors. This extension of topological principles to the fields of interferometers, may open up new possibilities for constructing robust wavelength division multiplexing, temperature-drift-insensitive sensing, and optical coherence tomography applications.

16.
Opt Express ; 21(17): 20291-302, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-24105575

RESUMO

We propose a plasmon-induced transparency (PIT) nanocavity for achieving nanoscopic coherent light source. The compact cavity is constructed by a pair of detuned nano-stubs incorporated with four-level gain medium. The PIT response enables the reduction of the coupling loss from cavity to waveguide while keeping the cavity size unchanged, different from the end-facet Fabry-Pérot cavity in which the radiation loss decreases at the cost of size increment. In order to study the lasing behavior of surface plasmon wave in the PIT cavity, the self-consistent finite element method is employed to model the interactions between gain and propagating surface plasmons. The dynamics of the whole lasing process is observed, and the linear output-input relation is obtained for the single mode plasmon lasing. It is demonstrated that smaller stub-pair detuning provides stronger feedback inside the cavity. Consequently, the lasing threshold of pumping rate decreases quadratically with the decreasing of detuning. However, the output-input extraction efficiency will improve when the detuning is not so small. One of the advantages for the proposal is that the lasing output power from the cavity can directly couple towards the metal-dielectric-metal waveguide platform, facilitating the field of integrated plasmonic circuits and molecular-scale coherent light source.

17.
Opt Express ; 21(10): 12068-76, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23736427

RESUMO

Viewing angle enlargement is essential for SLM-based 3D holographic display. An idea of constructing equivalent-curved-SLM-array (ECSA) is proposed by linear phase factor superimposition. Employing the time division and spatial tiling (TDST) techniques, an ECSA-based horizontal 4f optical system is designed and built. The horizontal viewing angle of a single SLM is increased to 3.6 times when retaining the same hologram area. An interlaced holographic display technique is developed to remove the flicker effect. Holographic augmented reality is performed using the TDST system. Floating holographic 3D image with parallax and accommodation effects is achieved. Both TDST and interlaced technique may extend to multiple SLMs system to achieve larger viewing angle.


Assuntos
Algoritmos , Holografia/instrumentação , Holografia/métodos , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
18.
Opt Lett ; 38(13): 2244-6, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23811890

RESUMO

Using the dyadic Green function (GF) with a multilayer medium, we propose an eigendecomposition (ED) analysis of a plasmonic system composed of a one-dimensional periodic metal nanoparticle chain and planar layered structure. An effective eigenpolarizability involving the collective effects of both the chain and the layered structure is well defined to characterize the dispersion relation and the mode quality of the plasmonic modes. Applying this method, we demonstrate that the interplay between the surface plasmon polaritons (SPPs) at the metal-dielectric interface and the localized plasmon in the chain enables strong mode splitting. In particular, for the polarization perpendicular to layer surface, high-quality modes can be present inside the light cone even if the chain is open to the surrounding air. A slow-light band is also predicted to exist as long as the layered medium supports a SPP mode that can couple to the chain mode.

19.
Opt Lett ; 38(17): 3460-3, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23988984

RESUMO

Chiral defect waveguides and waveguide bend geometry were designed in diamond photonic crystal to mold the flow of light in three dimensions. Propagations of electromagnetic waves in chiral waveguides are robust against isotropic obstacles, which would suppress backscattering in waveguides or integrated devices. Finite-difference time-domain simulations demonstrate that high coupling efficiency through the bend corner is preserved in the polarization gap, as it provides an additional constraint on the polarization state of the backscattered wave. Transport robustness is also demonstrated by inserting two metallic slabs into the waveguide bend.

20.
Natl Sci Rev ; 10(8): nwac289, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37389141

RESUMO

Chern insulators have been generalized to many classical wave systems and thereby lead to many potential applications such as robust waveguides, quantum computation and high-performance lasers. However, the band structure of a material can be either topologically trivial or non-trivial, depending on how the crystal structure is designed. Here, we propose a second Chern crystal in a four-dimensional parameter space by introducing two extra synthetic translation dimensions. Since the topology of the bulk bands in the synthetic translation space is intrinsically non-trivial, our proposed four-dimensional crystal is guaranteed to be topologically non-trivial regardless of the crystal's detailed configuration. We derive the topologically protected modes on the lower dimensional boundaries of such a crystal via dimension reduction. Remarkably, we observe the one-dimensional gapless dislocation modes and confirm their robustness in experiments. Our findings provide novel perspectives on topologically non-trivial crystals and may inspire designs of classical wave devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA