Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(9): 14367-14376, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157302

RESUMO

Miniaturized spectrometers in the mid-infrared (MIR) are critical in developing next-generation portable electronics for advanced sensing and analysis. The bulky gratings or detector/filter arrays in conventional micro-spectrometers set a physical limitation to their miniaturization. In this work, we demonstrate a single-pixel MIR micro-spectrometer that reconstructs the sample transmission spectrum by a spectrally dispersed light source instead of spatially grated light beams. The spectrally tunable MIR light source is realized based on the thermal emissivity engineered via the metal-insulator phase transition of vanadium dioxide (VO2). We validate the performance by showing that the transmission spectrum of a magnesium fluoride (MgF2) sample can be computationally reconstructed from sensor responses at varied light source temperatures. With potentially minimum footprint due to the array-free design, our work opens the possibility where compact MIR spectrometers are integrated into portable electronic systems for versatile applications.

2.
Phys Rev Lett ; 126(22): 223601, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34152166

RESUMO

The new physics of magic-angle twisted bilayer graphene (TBG) motivated extensive studies of flat bands hosted by moiré superlattices in van der Waals structures, inspiring the investigations into their photonic counterparts with potential applications including Bose-Einstein condensation. However, correlation between photonic flat bands and bilayer photonic moiré systems remains unexplored, impeding further development of moiré photonics. In this work, we formulate a coupled-mode theory for low-angle twisted bilayer honeycomb photonic crystals as a close analogy of TBG, discovering magic-angle photonic flat bands with a non-Anderson-type localization. Moreover, the interlayer separation constitutes a convenient degree of freedom in tuning photonic moiré bands without high pressure. A phase diagram is constructed to correlate the twist angle and separation dependencies to the photonic magic angles. Our findings reveal a salient correspondence between fermionic and bosonic moiré systems and pave the avenue toward novel applications through advanced photonic band or state engineering.

3.
Nano Lett ; 18(3): 1637-1643, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29400972

RESUMO

Along with the rapid development of hybrid electronic-photonic systems, multifunctional devices with dynamic responses have been widely investigated for improving many optoelectronic applications. For years, microelectro-opto-mechanical systems (MEOMS), one of the major approaches to realizing multifunctionality, have demonstrated profound reconfigurability and great reliability. However, modern MEOMS still suffer from limitations in modulation depth, actuation voltage, or miniaturization. Here, we demonstrate a new MEOMS multifunctional platform with greater than 50% optical modulation depth over a broad wavelength range. This platform is realized by a specially designed cantilever array, with each cantilever consisting of vanadium dioxide, chromium, and gold nanolayers. The abrupt structural phase transition of the embedded vanadium dioxide enables the reconfigurability of the platform. Diverse stimuli, such as temperature variation or electric current, can be utilized to control the platform, promising CMOS-compatible operating voltage. Multiple functionalities, including an active enhanced absorber and a reprogrammable electro-optic logic gate, are experimentally demonstrated to address the versatile applications of the MEOMS platform in fields such as communication, energy harvesting, and optical computing.

4.
Small ; 14(14): e1703621, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29479803

RESUMO

Micro-electromechanical (MEM) switches, with advantages such as quasi-zero leakage current, emerge as attractive candidates for overcoming the physical limits of complementary metal-oxide semiconductor (CMOS) devices. To practically integrate MEM switches into CMOS circuits, two major challenges must be addressed: sub 1 V operating voltage to match the voltage levels in current circuit systems and being able to deliver at least millions of operating cycles. However, existing sub 1 V mechanical switches are mostly subject to significant body bias and/or limited lifetimes, thus failing to meet both limitations simultaneously. Here 0.2 V MEM switching devices with ≳106 safe operating cycles in ambient air are reported, which achieve the lowest operating voltage in mechanical switches without body bias reported to date. The ultralow operating voltage is mainly enabled by the abrupt phase transition of nanolayered vanadium dioxide (VO2 ) slightly above room temperature. The phase-transition MEM switches open possibilities for sub 1 V hybrid integrated devices/circuits/systems, as well as ultralow power consumption sensors for Internet of Things applications.

5.
Opt Lett ; 43(8): 1826-1829, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29652374

RESUMO

Dissipative loss in optical materials is considered one of the major challenges in nano-optics. Here we show that, counter-intuitively, a large imaginary part of material permittivity contributes positively to subwavelength light enhancement and confinement. The Purcell factor and the fluorescence enhancement of dissipative dielectric bowtie nanoantennas, such as Si in ultraviolet (UV), are demonstrated to be orders of magnitude higher than their lossless dielectric counterparts, which is particularly favorable in deep UV applications where metals are plasmonically inactive. The loss-facilitated field enhancement is the result of a large material property contrast and an electric field discontinuity. These dissipative dielectric nanostructures can be easily achieved with a great variety of dielectrics at their Lorentz oscillation frequencies, thus having the potential to build a completely new material platform boosting light-matter interaction over broader frequency ranges, with advantages such as bio-compatibility, CMOS compatibility, and harsh environment endurance.


Assuntos
Fenômenos Eletromagnéticos , Luz , Nanoestruturas/química , Silício/química , Nanotecnologia , Óptica e Fotônica , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície
6.
Small ; 12(29): 3976-84, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27335137

RESUMO

The atomic thickness and flatness allow properties of 2D semiconductors to be modulated with influence from the substrate. Reversible modulation of these properties requires an "active," reconfigurable substrate, i.e., a substrate with switchable functionalities that interacts strongly with the 2D overlayer. In this work, the photoluminescence (PL) of monolayer molybdenum disulfide (MoS2 ) is modulated by interfacing it with a phase transition material, vanadium dioxide (VO2 ). The MoS2 PL intensity is enhanced by a factor of up to three when the underlying VO2 undergoes the thermally driven phase transition from the insulating to metallic phase. A nonvolatile, reversible way to rewrite the PL pattern is also demonstrated. The enhancement effect is attributed to constructive optical interference when the VO2 turns metallic. This modulation method requires no chemical or mechanical processes, potentially finding applications in new switches and sensors.

7.
Opt Express ; 24(18): 20365-72, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27607643

RESUMO

We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.

8.
ACS Nano ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951984

RESUMO

The cost of annual energy consumption in buildings in the United States exceeds 430 billion dollars ( Science 2019, 364 (6442), 760-763), of which about 48% is used for space thermal management (https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019), revealing the urgent need for efficient thermal management of buildings and dwellings. Radiative cooling technologies, combined with the booming photonic and microfabrication technologies ( Nature 2014, 515 (7528), 540-544), enable energy-free cooling by radiative heat transfer to outer space through the atmospheric transparent window ( Nat. Commun. 2024, 15 (1), 815). To pursue all-season energy savings in climates with large temperature variations, switchable and tunable radiative coolers (STRC) have emerged in recent years and quickly gained broad attention. This Perspective introduces the existing STRC technologies and analyzes their benefits and challenges in future large-scale applications, suggesting ways for the development of future STRCs.

9.
Sci Adv ; 10(21): eadp5215, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787948

RESUMO

Multi-stimulus responsive soft materials with integrated functionalities are elementary blocks for building soft intelligent systems, but their rational design remains challenging. Here, we demonstrate an intelligent soft architecture sensitized by magnetized liquid metal droplets that are dispersed in a highly stretchable elastomer network. The supercooled liquid metal droplets serve as microscopic latent heat reservoirs, and their controllable solidification releases localized thermal energy/information flows for enabling programmable visualization and display. This allows the perception of a variety of information-encoded contact (mechanical pressing, stretching, and torsion) and noncontact (magnetic field) stimuli as well as the visualization of dynamic phase transition and stress evolution processes, via thermal and/or thermochromic imaging. The liquid metal-elastomer architecture offers a generic platform for designing soft intelligent sensing, display, and information encryption systems.

10.
Nat Commun ; 14(1): 6014, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758708

RESUMO

The twisted stacking of two layered crystals has led to the emerging moiré physics as well as intriguing chiral phenomena such as chiral phonon and photon generation. In this work, we identified and theoretically formulated a non-trivial twist-enabled coupling mechanism in twisted bilayer photonic crystal (TBPC), which connects the bound state in the continuum (BIC) mode to the free space through the twist-enabled channel. Moreover, the radiation from TBPC hosts an optical vortex in the far field with both odd and even topological orders. We quantitatively analyzed the twist-enabled coupling between the BIC mode and other non-local modes in the photonic crystals, giving rise to radiation carrying orbital angular momentum. The optical vortex generation is robust against geometric disturbance, making TBPC a promising platform for well-defined vortex generation. As a result, TBPCs not only provide a new approach to manipulating the angular momentum of photons, but may also enable novel applications in integrated optical information processing and optical tweezers. Our work broadens the field of moiré photonics and paves the way toward the novel application of moiré physics.

11.
Sci Adv ; 8(12): eabm7103, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35319983

RESUMO

Novel magnetic ground states have been stabilized in two-dimensional (2D) magnets such as skyrmions, with the potential next-generation information technology. Here, we report the experimental observation of a Néel-type skyrmion lattice at room temperature in a single-phase, layered 2D magnet, specifically a 50% Co-doped Fe5GeTe2 (FCGT) system. The thickness-dependent magnetic domain size follows Kittel's law. The static spin textures and spin dynamics in FCGT nanoflakes were studied by Lorentz electron microscopy, variable-temperature magnetic force microscopy, micromagnetic simulations, and magnetotransport measurements. Current-induced skyrmion lattice motion was observed at room temperature, with a threshold current density, jth = 1 × 106 A/cm2. This discovery of a skyrmion lattice at room temperature in a noncentrosymmetric material opens the way for layered device applications and provides an ideal platform for studies of topological and quantum effects in 2D.

12.
Science ; 374(6574): 1504-1509, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34914515

RESUMO

The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. We approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations.

13.
Nat Commun ; 11(1): 6028, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247120

RESUMO

Naturally-occurring thermal materials usually possess specific thermal conductivity (κ), forming a digital set of κ values. Emerging thermal metamaterials have been deployed to realize effective thermal conductivities unattainable in natural materials. However, the effective thermal conductivities of such mixing-based thermal metamaterials are still in digital fashion, i.e., the effective conductivity remains discrete and static. Here, we report an analog thermal material whose effective conductivity can be in-situ tuned from near-zero to near-infinity κ. The proof-of-concept scheme consists of a spinning core made of uncured polydimethylsiloxane (PDMS) and fixed bilayer rings made of silicone grease and steel. Thanks to the spinning PDMS and its induced convective effects, we can mold the heat flow robustly with continuously changing and anisotropic κ. Our work enables a single functional thermal material to meet the challenging demands of flexible thermal manipulation. It also provides platforms to investigate heat transfer in systems with moving components.

14.
Adv Mater ; 32(36): e1907071, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32700403

RESUMO

Thermal radiation from a black body increases with the fourth power of absolute temperature (T4 ), an effect known as the Stefan-Boltzmann law. Typical materials radiate heat at a portion of this limit, where the portion, called integrated emissivity (εint ), is insensitive to temperature (|dεint /dT| ≈ 10-4 °C-1 ). The resultant radiance bound by the T4 law limits the ability to regulate radiative heat. Here, an unusual material platform is shown in which εint can be engineered to decrease in an arbitrary manner near room temperature (|dεint /dT| ≈ 8 × 10-3 °C-1 ), enabling unprecedented manipulation of infrared radiation. As an example, εint is programmed to vary with temperature as the inverse of T4 , precisely counteracting the T4 dependence; hence, thermal radiance from the surface becomes temperature-independent, allowing the fabrication of flexible and power-free infrared camouflage with unique advantage in performance stability. The structure is based on thin films of tungsten-doped vanadium dioxide where the tungsten fraction is judiciously graded across a thickness less than the skin depth of electromagnetic screening.

15.
Sci Adv ; 6(50)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33298452

RESUMO

Thermography detects surface temperature and subsurface thermal activity of an object based on the Stefan-Boltzmann law. Impacts of the technology would be more far-reaching with finer thermal sensitivity, called noise-equivalent differential temperature (NEDT). Existing efforts to advance NEDT are all focused on improving registration of radiation signals with better cameras, driving the number close to the end of the roadmap at 20 to 40 mK. In this work, we take a distinct approach of sensitizing surface radiation against minute temperature variation of the object. The emissivity of the thermal imaging sensitizer (TIS) rises abruptly at a preprogrammed temperature, driven by a metal-insulator transition in cooperation with photonic resonance in the structure. The NEDT is refined by over 15 times with the TIS to achieve single-digit millikelvin resolution near room temperature, empowering ambient thermography for a broad range of applications such as in operando electronics analysis and early cancer screening.

16.
Adv Mater ; 30(38): e1802632, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30095179

RESUMO

Featuring high photon energy and short wavelength, ultraviolet (UV) light enables numerous applications such as high-resolution imaging, photolithography, and sensing. In order to manipulate UV light, bulky optics are usually required, and hence do not meet the fast-growing requirements of integration in compact systems. Recently, metasurfaces have shown unprecedented control of light, enabling substantial miniaturization of photonic devices from terahertz to visible regions. However, material challenges have hampered the realization of such functionalities at shorter wavelengths. Herein, it is experimentally demonstrated that all-silicon (Si) metasurfaces with thicknesses of only one-tenth of the working wavelength can be designed and fabricated to manipulate broadband UV light with efficiencies comparable to plasmonic metasurface performance in infrared (IR). Also, for the first time, photolithography enabled by metasurface-generated UV holograms is shown. Such performance enhancement is attributed to increased scattering cross sections of Si antennas in the UV range, which is adequately modeled via a circuit. The new platform introduced here will deepen the understanding of light-matter interactions and introduce even more material options to broadband metaphotonic applications, including those in integrated photonics and holographic lithography technologies.

17.
Adv Mater ; 30(5)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29226459

RESUMO

The unique correspondence between mathematical operators and photonic elements in wave optics enables quantitative analysis of light manipulation with individual optical devices. Phase-transition materials are able to provide real-time reconfigurability of these devices, which would create new optical functionalities via (re)compilation of photonic operators, as those achieved in other fields such as field-programmable gate arrays (FPGA). Here, by exploiting the hysteretic phase transition of vanadium dioxide, an all-solid, rewritable metacanvas on which nearly arbitrary photonic devices can be rapidly and repeatedly written and erased is presented. The writing is performed with a low-power laser and the entire process stays below 90 °C. Using the metacanvas, dynamic manipulation of optical waves is demonstrated for light propagation, polarization, and reconstruction. The metacanvas supports physical (re)compilation of photonic operators akin to that of FPGA, opening up possibilities where photonic elements can be field programmed to deliver complex, system-level functionalities.

18.
Sci Rep ; 7(1): 7131, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28769057

RESUMO

Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. Here we describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure and area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO2) thin film. Our solid-state devices demonstrate large and reversible alteration of cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. Our new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA