RESUMO
Haptic information is essential in everyday activities, especially for visually impaired people in terms of real-world navigation. Since human haptic sensory processing is nonlinear, asymmetric vibrations have been widely studied to create a pulling sensation for the delivery of directional haptic cues. However, the design of an input control signal that generates asymmetric vibrations has not yet been parameterised. In particular, it is unclear how to quantify the asymmetry of the output vibrations to create a better pulling sensation. To better understand the design of an input control signal that generates haptic directional cues, we evaluated the effect of the pulling sensations corresponding to the three adjustable parameters (i.e., delay time, ramp-down step length, and cut-off voltage) in a commonly applied step-ramp input signal. The results of a displacement measurement and a psychophysical experiment demonstrate that when the quantified asymmetry ratio is in a range of 0.3430-0.3508 with an optimised cut-off voltage for our hand-held device, the haptic directional cues are better perceived by participants. Additionally, the results also showed a superior performance in haptic delivery by shear forces than normal forces.
Assuntos
Sinais (Psicologia) , Tecnologia Háptica , Humanos , Tato , Extremidade Superior , VibraçãoRESUMO
The optimal temperature for the microbial polysaccharide fermentation is no higher than 30 °C, which is economically undesirable due to additional cooling cost. To solve this problem in the case of welan gum production, we obtained the high-temperature-tolerant-producing strain, Sphingomonas sp. HT-1 by atmospheric and room-temperature plasma-induced mutation. Using HT-1, we obtained a concentration and 1 % aqueous viscosity of 26.8 ± 0.34 g/L and 3.50 ± 0.05 Pa s at a comparatively higher optimal temperature (37 °C). HT-1 was further characterized to understand the mechanism by which these properties are improved. Results indicated that high yield could be attributed to the following: (1) enhanced intracellular synthesis, demonstrated by an increase in the activities of key enzymes, and (2) accelerated cross-membrane substrate uptake and product secretion, indicated by improved membrane fluidity and permeability. Temperature tolerance could be attributed to the overexpression of the investigated heat shock proteins and oxidative stress proteins.
Assuntos
Temperatura Alta , Mutação , Polissacarídeos Bacterianos/biossíntese , Sphingomonas/isolamento & purificação , Fermentação , Microscopia Eletrônica de Transmissão , Estresse Oxidativo , Reação em Cadeia da Polimerase , Sphingomonas/genéticaRESUMO
Evaluating progress throughout a patient's rehabilitation process helps choose effective treatment and formulate personalised and evidence-based rehabilitation interventions. The evaluation process is difficult due to the limitations of current clinical assessments. They lack the ability to reflect sensitive changes continuously throughout the rehabilitation process. Kinematic features have been extracted from individual's movement to address this problem due to their sensitivity and continuity. However, choosing appropriate kinematic features for rehabilitation evaluation has always been challenging. This paper exploits the application of kinematic features to classify movement patterns and movement qualities. 12 kinematic features were firstly extracted from a 7-segment triangle pattern of motion to monitor the learning progress with more numbers of drawing attempts. A statistical analysis was then conducted to compare the selected kinematic features with the clinically validated normalised jerk. Two supervised machine learning models were finally developed to classify movement patterns and movement qualities based on the selected kinematic features. The study was based on data recorded from 14 participants using a single position sensor. 6 kinematic features were able to reflect sensitive changes during the experiment and all kinematic features contributed to the classification tasks. Consistent with the literature, the results indicated that features based on movement velocity were the most beneficial in the classification tasks.
Assuntos
Movimento , Extremidade Superior , Humanos , Fenômenos Biomecânicos , Aprendizado de Máquina , Aprendizado de Máquina SupervisionadoRESUMO
Assistive rehabilitation devices have been developed to help post-stroke patients to recover and live independently for a number of years. As a way to communicate with the physical world, force sensation is extremely helpful to rebuild neuroplasticity [1] during the rehabilitation process. This paper presents a model and design of asymmetric vibrations to provide bidirectional force sensation, which can be beneficial to design a portable rehabilitation haptic device. Users will feel a directional cue generated by asymmetric vibrations by holding the device. This directional cue can navigate users around in a rehabilitation training along with visual guidance and provide physical force sensations. The system consists of a current-drive single solenoid rigidly attached to a base. The system's model is verified through experiment at three different frequencies. Our analysis shows that by varying the signal's duty ratio, the direction of peak accelerations change from positive to negative. In addition, two other waveforms (saw-tooth and step-ramp) at several frequencies and different spring's stiffness are also discussed to determine the ideal characteristics of the input signal for rehabilitation applications.
Assuntos
Tecnologia Assistiva , Vibração , Humanos , SensaçãoRESUMO
Volatile organic compounds (VOCs) are ubiquitous in the atmosphere and the majority of them have been proved to be detrimental to human health. The hazardous VOCs were studied very insufficiently in China, despite the enormous emissions of VOCs. In this study, the concentrations and sources of 17 hazardous VOCs reported in literature were reviewed, based on which the health effects were assessed. In-depth survey indicated that benzene and toluene had the highest concentrations in eastern China (confined to the study regions reviewed, same for the other geographic generalization), which however showed significant declines. The southern China featured high levels of trichloroethylene. Dichloromethane and chloroform were observed to be concentrated in northern China. The distributions of 1,2-dichloropropane and tetrachloroethylene were homogeneous across the country. Basically consistent with the spatial patterns of ozone, the summertime formaldehyde exhibited higher levels in eastern and northern China, and increased continuously. While transportation served as the largest source of benzene and toluene, industrial emissions and secondary formation were the predominant contributors of halogenated hydrocarbons and aldehydes (formaldehyde and acetaldehyde), respectively. The chronic non-cancer effects of inhalation exposure to the hazardous VOCs were insignificant, however the probabilities of developing cancers by inhaling the hazardous VOCs in ambient air of China were quite high. Formaldehyde was identified as the primary carcinogenic VOC in the atmosphere of most regions. The striking results, especially the high inhalation cancer risks, alerted us that the emission controls of hazardous VOCs were urgent in China, which must be grounded upon full understanding of their occurrence, presence and health effects.
Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Compostos Orgânicos Voláteis/análise , Aldeídos , Atmosfera , Benzeno , China , Formaldeído , Humanos , Exposição por Inalação/estatística & dados numéricos , Ozônio , ToluenoRESUMO
Agitator is one of the essential factors to realize high efficient fermentation for high aerobic and viscous microorganisms, and the influence of different impeller combination on the fermentation process is very important. Welan gum is a microbial exopolysaccharide produced by Alcaligenes sp. under high aerobic and high viscos conditions. Computational fluid dynamics (CFD) numerical simulation was used for analyzing the distribution of velocity, shear rate and gas holdup in the welan fermentation reactor under six different impeller combinations. The best three combinations of impellers were applied to the fermentation of welan. By analyzing the fermentation performance, the MB-4-6 combination had better effect on dissolved oxygen and velocity. The content of welan was increased by 13%. Furthermore, the viscosity of production were also increased.
Assuntos
Fermentação , Hidrodinâmica , Microbiologia Industrial/métodos , Polissacarídeos Bacterianos/biossíntese , Viscosidade , Alcaligenes/metabolismo , OxigênioRESUMO
Rhamsan gum is a type of water-soluble exopolysaccharide produced by species of Sphingomonas bacteria. The optimal fermentation medium for rhamsan gum production by Sphingomonas sp. CGMCC 6833 was explored definition. Single-factor experiments indicate that glucose, soybean meal, K(2)HPO(4) and MnSO(4) compose the optimal medium along with and initial pH 7.5. To discover ideal cultural conditions for rhamsan gum production in a shake flask culture, response surface methodology was employed, from which the following optimal ratio was derived: 5.38 g/L soybean meal, 5.71 g/L K(2)HPO(4) and 0.32 g/L MnSO(4). Under ideal fermentation rhamsan gum yield reached 19.58 g/L ± 1.23 g/L, 42.09% higher than that of the initial medium (13.78 g/L ± 1.38 g/L). Optimizing the fermentation medium results in enhanced rhamsan gum production.