Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 42(16): e2100232, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34121263

RESUMO

Ionic species are important to dominate phase separation behaviors of poly(N-isopropylacrylamide) (PNIPAm) in aqueous solutions. Herein, photoresponsive azobenzene-based salts with various ions are prepared and their photoresponsive ion effects on clouding temperatures (TcpS ) of PNIPAm in aqueous solutions are explored. It is found that, despite of various structures of anions and cations, trans-TcpS under vis light irradiation are always higher than cis-TcpS under UV irradiation. Particularly, Hofmeister effect of anions on TcpS is roughly observed. For example, azobenzene with kosmotropic CO3 2- gives the lowest cis-Tcp while in use of typical chaotropic anions, such as ClO4 - , azobenzene isomerization less affects values of Tcp s. In another hand, azobenzene-based metallic salts containing lithium, sodium, and potassium cations also demonstrate photoresponsive Hofmeister effect. Trans-metallic azobenzene demonstrates a chaotropic effect on Tcp s while UV induces kosmotropic behaviors on TcpS . Additionally, ionic conduction of the solution along with photoresponsive phase separations is also investigated and PNIPAm aggregations induce a sharp reduction of ion conduction during UV light illumination.


Assuntos
Resinas Acrílicas , Sais , Compostos Azo , Cátions
2.
ACS Appl Mater Interfaces ; 12(37): 42202-42209, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32820633

RESUMO

Exploring a simple, on-demanding method of manipulating ionic conduction of ionic liquids with large amplitudes is a challenging task. Here, a reversible ion-conducting switch was obtained based on photoswitchable sol-gel transitions. The device was successfully applied in an electronic circuit to switch it on/off. The ion gel was prepared by directly mixing following individual components: azobenzene (Azo), poly(N-isopropylacrylamide) (PNIPAm), and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]). The mixture is denoted as Azo/PNIPAm/[C2mim][NTf2]. The framework of this gel structure was particularly designed as an analogue to the physical mode of control theory: sensor/amplification/action. Light-induced isomerization of Azo acts as the light sensor to trigger the macroscopic sol-gel transition of PNIPAm assemblies. Such transition works as the amplification, which significantly affects the ionic movements, resulting in high-amplitude switching behavior. A photoswitchable ionic conductive device was demonstrated as action in this paper. Under UV irradiation, the sol-like state of Azo/PNIPAm/[C2mim][NTf2] provided a higher ion conduction (around 1 mS/cm) while being exposed to visible light, and a lower ion conduction (0.04 mS/cm) was observed in the gel state. This photoswitchable ion conductivity device was integrated to a well-designed logic gate to switch circuits on or off. This confirms the possible practical application of the sol-gel device, which outputs stable and detectable electrical signals. The research here demonstrates a simple but effective strategy to control the ionic movements, which can be applied in optoelectronic devices. The principle can be used to design different types of molecular optoelectronic switches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA