Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 7(1): 99, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35383142

RESUMO

The combination of immune checkpoint blockade (ICB) with chemotherapy significantly improves clinical benefit of cancer treatment. Since chemotherapy is often associated with adverse events, concomitant treatment with drugs managing side effects of chemotherapy is frequently used in the combination therapy. However, whether these ancillary drugs could impede immunotherapy remains unknown. Here, we showed that ∆9-tetrahydrocannabinol (THC), the key ingredient of drugs approved for the treatment of chemotherapy-caused nausea, reduced the therapeutic effect of PD-1 blockade. The endogenous cannabinoid anandamide (AEA) also impeded antitumor immunity, indicating an immunosuppressive role of the endogenous cannabinoid system (ECS). Consistently, high levels of AEA in the sera were associated with poor overall survival in cancer patients. We further found that cannabinoids impaired the function of tumor-specific T cells through CNR2. Using a knock-in mouse model expressing a FLAG-tagged Cnr2 gene, we discovered that CNR2 binds to JAK1 and inhibits the downstream STAT signaling in T cells. Taken together, our results unveiled a novel mechanism of the ECS-mediated suppression on T-cell immunity against cancer, and suggest that cannabis and cannabinoid drugs should be avoided during immunotherapy.


Assuntos
Canabinoides , Cannabis , Imunossupressores , Neoplasias , Linfócitos T , Animais , Canabinoides/efeitos adversos , Canabinoides/farmacologia , Dronabinol/efeitos adversos , Dronabinol/farmacologia , Humanos , Imunossupressores/efeitos adversos , Imunossupressores/farmacologia , Janus Quinases , Camundongos , Neoplasias/imunologia , Receptor CB2 de Canabinoide/genética , Fatores de Transcrição STAT , Transdução de Sinais , Linfócitos T/efeitos dos fármacos
2.
Cell Res ; 32(6): 530-542, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35165422

RESUMO

Personalized immunotherapy targeting tumor-specific antigens (TSAs) could generate efficient and safe antitumor immune response without damaging normal tissues. Although neoantigen vaccines have shown therapeutic effect in clinic trials, precise prediction of neoantigens from tumor mutations is still challenging. The host antitumor immune response selects and activates T cells recognizing tumor antigens. Hence, T cells engineered with T-cell receptors (TCRs) from these naturally occurring tumor antigen-specific T (Tas) cells in a patient will target personal TSAs in his/her tumor. To establish such a personalized TCR-T cell therapy, we comprehensively characterized T cells in tumor and its adjacent tissues by single-cell mRNA sequencing (scRNA-seq), TCR sequencing (TCR-seq) and in vitro neoantigen stimulation. Compared to bystander T cells circulating among tissues, Tas cells were characterized by tumor enrichment, tumor-specific clonal expansion and neoantigen specificity. We found that CXCL13 is a unique marker for both CD4+ and CD8+ Tas cells. Importantly, TCR-T cells expressing TCRs from Tas cells showed significant therapeutic effects on autologous patient-derived xenograft (PDX) tumors. Intratumoral Tas cell levels measured by CXCL13 expression precisely predicted the response to immune checkpoint blockade, indicating a critical role of Tas cells in the antitumor immunity. We further identified CD200 and ENTPD1 as surface markers for CD4+ and CD8+ Tas cells respectively, which enabled the isolation of Tas cells from tumor by Fluorescence Activating Cell Sorter (FACS) sorting. Overall, our results suggest that TCR-T cells engineered with Tas TCRs are a promising agent for personalized immunotherapy, and intratumoral Tas cell levels determine the response to immunotherapy.


Assuntos
Neoplasias , Linfócitos T , Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos , Terapia Baseada em Transplante de Células e Tecidos , Feminino , Humanos , Imunoterapia/métodos , Masculino , Neoplasias/metabolismo , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo
3.
Cancer Immunol Res ; 9(4): 371-385, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33608256

RESUMO

Immunologic checkpoint blockade has been proven effective in a variety of malignancies. However, high rates of resistance have substantially hindered its clinical use. Understanding the underlying mechanisms may lead to new strategies for improving therapeutic efficacy. Although a number of signaling pathways have been shown to be associated with tumor cell-mediated resistance to immunotherapy, T cell-intrinsic resistant mechanisms remain elusive. Here, we demonstrated that diacylglycerol kinase alpha (Dgka) mediated T-cell dysfunction during anti-PD-1 therapy by exacerbating the exhaustion of reinvigorated tumor-specific T cells. Pharmacologic ablation of Dgka postponed T-cell exhaustion and delayed development of resistance to PD-1 blockade. Dgka inhibition also enhanced the efficacy of anti-PD-1 therapy. We further found that the expression of DGKA in cancer cells promoted tumor growth via the AKT signaling pathway, suggesting that DGKA might be a target in tumor cells as well. Together, these findings unveiled a molecular pathway mediating resistance to PD-1 blockade and provide a potential therapeutic strategy with combination immunotherapy.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Diacilglicerol Quinase/metabolismo , Neoplasias/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Diacilglicerol Quinase/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Humanos , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA