Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Asian-Australas J Anim Sci ; 33(10): 1610-1616, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32054216

RESUMO

OBJECTIVE: This study was to evaluate the effect of husbandry systems and strains on cecum microbial diversity of Jingyang chickens under the same dietary conditions. METHODS: A total of 320 laying hens (body weight, 1.70±0.15 kg; 47 weeks old) were randomly allocated to one of the four treatments: i) Silver-feathered hens in enrichment cages (SEC) with an individual cage (70×60×75 cm), ii) Silver-feathered hens in free range (SFR) with the stocking density of 1.5 chickens per ten square meters, iii) Gold-feathered hens in enrichment cages (GEC), iv) Gold-feathered hens in free range (GFR). The experiment lasted 8 weeks and the cecum fecal samples were collected for 16S rDNA high throughput sequencing at the end of experiment. RESULTS: i) The core microbiota was composed of Bacteroidetes (49% to 60%), Firmicutes (21% to 32%) and Proteobacteria (2% to 4%) at the phylum level. ii) The core bacteria were Bacteroides (26% to 31%), Rikenellaceae (9% to 16%), Parabacteroides (2% to 5%) and Lachnoclostridium (2% to 6%) at the genus level. iii) The indexes of operational taxonomic unit, Shannon, Simpson and observed species were all higher in SFR group than in SEC group while in GEC group than in GFR group, with SFR group showing the greatest diversity of cecum microorganisms among the four groups. iv) The clustering result was consistent with the strain classification, with a similar composition of cecum bacteria in the two strains of laying hens. CONCLUSION: The core microbiota were not altered by husbandry systems or strains. The free-range system increased the diversity of cecal microbes only for silver feathered hens. However, the cecum microbial composition was similar in two strain treatments under the same dietary conditions.

2.
Genes (Basel) ; 12(9)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34573307

RESUMO

Previous studies have shown that gga-miR-2954 was highly expressed in the gonads and other tissues of male chickens, including muscle tissue. Yin Yang1 (YY1), which has functions in mammalian skeletal muscle development, was predicted to be a target gene of gga-miR-2954. The purpose of this study was to investigate whether gga-miR-2954 plays a role in skeletal muscle development by targeting YY1, and evaluate its function in the sexual dimorphism development of chicken muscle. Here, all the temporal and spatial expression profiles in chicken embryonic muscles showed that gga-miR-2954 is highly expressed in males and mainly localized in cytoplasm. Gga-miR-2954 exhibited upregulated expression of in vitro myoblast differentiation stages. Next, through the overexpression and loss-of-function experiments performed in chicken primary myoblasts, we found that gga-miR-2954 inhibited myoblast proliferation but promoted differentiation. During myogenesis, gga-miR-2954 could suppress the expression of YY1, which promoted myoblast proliferation and inhibited the process of myoblast cell differentiation into multinucleated myotubes. Overall, these findings reveal a novel role of gga-miR-2954 in skeletal muscle development through its function of the myoblast proliferation and differentiation by suppressing the expression of YY1. Moreover, gga-miR-2954 may contribute to the sex difference in chicken muscle development.


Assuntos
Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA