Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 20(8): 2540-54, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24753029

RESUMO

We estimate changes in forest cover (deforestation and forest regrowth) in the tropics for the two last decades (1990-2000 and 2000-2010) based on a sample of 4000 units of 10 ×10 km size. Forest cover is interpreted from satellite imagery at 30 × 30 m resolution. Forest cover changes are then combined with pan-tropical biomass maps to estimate carbon losses. We show that there was a gross loss of tropical forests of 8.0 million ha yr(-1) in the 1990s and 7.6 million ha yr(-1) in the 2000s (0.49% annual rate), with no statistically significant difference. Humid forests account for 64% of the total forest cover in 2010 and 54% of the net forest loss during second study decade. Losses of forest cover and Other Wooded Land (OWL) cover result in estimates of carbon losses which are similar for 1990s and 2000s at 887 MtC yr(-1) (range: 646-1238) and 880 MtC yr(-1) (range: 602-1237) respectively, with humid regions contributing two-thirds. The estimates of forest area changes have small statistical standard errors due to large sample size. We also reduce uncertainties of previous estimates of carbon losses and removals. Our estimates of forest area change are significantly lower as compared to national survey data. We reconcile recent low estimates of carbon emissions from tropical deforestation for early 2000s and show that carbon loss rates did not change between the two last decades. Carbon losses from deforestation represent circa 10% of Carbon emissions from fossil fuel combustion and cement production during the last decade (2000-2010). Our estimates of annual removals of carbon from forest regrowth at 115 MtC yr(-1) (range: 61-168) and 97 MtC yr(-1) (53-141) for the 1990s and 2000s respectively are five to fifteen times lower than earlier published estimates.


Assuntos
Carbono/análise , Conservação dos Recursos Naturais/tendências , Florestas , Biomassa , Modelos Teóricos , Tecnologia de Sensoriamento Remoto , Imagens de Satélites , Clima Tropical
2.
J Biogeogr ; 40(6): 1036-1047, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23935237

RESUMO

AIM: This study provides regional estimates of forest cover in dry African ecoregions and the changes in forest cover that occurred there between 1990 and 2000, using a systematic sample of medium-resolution satellite imagery which was processed consistently across the continent. LOCATION: The study area corresponds to the dry forests and woodlands of Africa between the humid forests and the semi-arid regions. This area covers the Sudanian and Zambezian ecoregions. METHODS: A systematic sample of 1600 Landsat satellite imagery subsets, each 20 km × 20 km in size, were analysed for two reference years: 1990 and 2000. At each sample site and for both years, dense tree cover, open tree cover, other wooded land and other vegetation cover were identified from the analysis of satellite imagery, which comprised multidate segmentation and automatic classification steps followed by visual control by national forestry experts. RESULTS: Land cover and land-cover changes were estimated at continental and ecoregion scales and compared with existing pan-continental, regional and local studies. The overall accuracy of our land-cover maps was estimated at 87%. Between 1990 and 2000, 3.3 million hectares (Mha) of dense tree cover, 5.8 Mha of open tree cover and 8.9 Mha of other wooded land were lost, with a further 3.9 Mha degraded from dense to open tree cover. These results are substantially lower than the 34 Mha of forest loss reported in the FAO's 2010 Global Forest Resources Assessment for the same period and area. MAIN CONCLUSIONS: Our method generates the first consistent and robust estimates of forest cover and change in dry Africa with known statistical precision at continental and ecoregion scales. These results reduce the uncertainty regarding vegetation cover and its dynamics in these previously poorly studied ecosystems and provide crucial information for both science and environmental policies.

3.
Philos Trans R Soc Lond B Biol Sci ; 368(1625): 20120300, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23878331

RESUMO

This paper presents a map of Africa's rainforests for 2005. Derived from moderate resolution imaging spectroradiometer data at a spatial resolution of 250 m and with an overall accuracy of 84%, this map provides new levels of spatial and thematic detail. The map is accompanied by measurements of deforestation between 1990, 2000 and 2010 for West Africa, Central Africa and Madagascar derived from a systematic sample of Landsat images-imagery from equivalent platforms is used to fill gaps in the Landsat record. Net deforestation is estimated at 0.28% yr(-1) for the period 1990-2000 and 0.14% yr(-1) for the period 2000-2010. West Africa and Madagascar exhibit a much higher deforestation rate than the Congo Basin, for example, three times higher for West Africa and nine times higher for Madagascar. Analysis of variance over the Congo Basin is then used to show that expanding agriculture and increasing fuelwood demands are key drivers of deforestation in the region, whereas well-controlled timber exploitation programmes have little or no direct influence on forest-cover reduction at present. Rural and urban population concentrations and fluxes are also identified as strong underlying causes of deforestation in this study.


Assuntos
Ecossistema , Árvores , Clima Tropical , África , Agricultura , Ciclo do Carbono , Mudança Climática , Conservação dos Recursos Naturais , Humanos , Chuva , População Rural , Fatores de Tempo , Árvores/metabolismo , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA