RESUMO
The molecular rules driving TCR cross-reactivity are poorly understood and, consequently, it is unclear the extent to which TCRs targeting the same Ag recognize the same off-target peptides. We determined TCR-peptide-HLA crystal structures and, using a single-chain peptide-HLA phage library, we generated peptide specificity profiles for three newly identified human TCRs specific for the cancer testis Ag NY-ESO-1157-165-HLA-A2. Two TCRs engaged the same central peptide feature, although were more permissive at peripheral peptide positions and, accordingly, possessed partially overlapping peptide specificity profiles. The third TCR engaged a flipped peptide conformation, leading to the recognition of off-target peptides sharing little similarity with the cognate peptide. These data show that TCRs specific for a cognate peptide recognize discrete peptide repertoires and reconciles how an individual's limited TCR repertoire following negative selection in the thymus is able to recognize a vastly larger antigenic pool.
Assuntos
Antígeno HLA-A2/imunologia , Antígenos de Histocompatibilidade/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linhagem Celular , Humanos , Biblioteca de PeptídeosRESUMO
Robust preclinical testing is essential to predict clinical safety and efficacy and provide data to determine safe dose for first-in-man studies. There are a growing number of examples where the preclinical development of drugs failed to adequately predict clinical adverse events in part due to their assessment with inappropriate preclinical models. Preclinical investigations of T cell receptor (TCR)-based immunotherapies prove particularly challenging as these biologics are human-specific and thus the conventional testing in animal models is inadequate. As these molecules harness the full force of the immune system, and demonstrate tremendous potency, we set out to design a preclinical package that would ensure adequate evaluation of these therapeutics. Immune Mobilising Monoclonal TCR Against Cancer (ImmTAC) molecules are bi-specific biologics formed of an affinity-enhanced TCR fused to an anti-CD3 effector function. ImmTAC molecules are designed to activate human T lymphocytes and target peptides within the context of a human leukocyte antigen (HLA), thus require an intact human immune system and peptidome for suitable preclinical screening. Here we draw upon the preclinical testing of four ImmTAC molecules, including IMCgp100, the first ImmTAC molecule to reach the clinic, to present our comprehensive, informative and robust approach to in vitro preclinical efficacy and safety screening. This package comprises a broad range of cellular and molecular assays using human tissues and cultured cells to test efficacy, safety and specificity, and hence predict human responses in clinical trials. We propose that this entirely in vitro package offers a potential model to be applied to screening other TCR-based biologics.
Assuntos
Anticorpos Biespecíficos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Proteínas/farmacologia , Anticorpos de Cadeia Única/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Técnicas In Vitro , Fluxo de TrabalhoRESUMO
Natural T-cell responses generally lack the potency to eradicate cancer. Enhanced affinity T-cell receptors (TCRs) provide an ideal approach to target cancer cells, with emerging clinical data showing significant promise. Nevertheless, the risk of off target reactivity remains a key concern, as exemplified in a recent clinical report describing fatal cardiac toxicity, following administration of MAGE-A3 specific TCR-engineered T-cells, mediated through cross-reactivity with an unrelated epitope from the Titin protein presented on cardiac tissue. Here, we investigated the structural mechanism enabling TCR cross-recognition of MAGE-A3 and Titin, and applied the resulting data to rationally design mutants with improved antigen discrimination, providing a proof-of-concept strategy for altering the fine specificity of a TCR towards an intended target antigen. This study represents the first example of direct molecular mimicry leading to clinically relevant fatal toxicity, mediated by a modified enhanced affinity TCR designed for cancer immunotherapy. Furthermore, these data demonstrate that self-antigens that are expressed at high levels on healthy tissue should be treated with extreme caution when designing immuno-therapeutics.