Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 155, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38244047

RESUMO

Agri-food residues offer significant potential as a raw material for the production of L-lactic acid through microbial fermentation. Weizmannia coagulans, previously known as Bacillus coagulans, is a spore-forming, lactic acid-producing, gram-positive, with known probiotic and prebiotic properties. This study aimed to evaluate the feasibility of utilizing untreated citrus waste as a sustainable feedstock for the production of L-lactic acid in a one-step process, by using the strain W. coagulans MA-13. By employing a thermophilic enzymatic cocktail (Cellic CTec2) in conjunction with the hydrolytic capabilities of MA-13, biomass degradation was enhanced by up to 62%. Moreover, batch and fed-batch fermentation experiments demonstrated the complete fermentation of glucose into L-lactic acid, achieving a concentration of up to 44.8 g/L. These results point to MA-13 as a microbial cell factory for one-step production of L-lactic acid, by combining cost-effective saccharification with MA-13 fermentative performance, on agri-food wastes. Moreover, the potential of this approach for sustainable valorization of agricultural waste streams is successfully proven. KEY POINTS: • Valorization of citrus waste, an abundant residue in Mediterranean countries. • Sustainable production of the L-( +)-lactic acid in one-step process. • Enzymatic pretreatment is a valuable alternative to the use of chemical.


Assuntos
Bacillus coagulans , Ácido Láctico , Ácido Láctico/metabolismo , Bacillus coagulans/metabolismo , Fermentação , Glucose/metabolismo , Alimentos
2.
Molecules ; 28(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570626

RESUMO

The primary objective of the Sustainable Development Goals is to reduce food waste by employing various strategies, including the reuse of agri-food residues that are abundantly available and the complete use of their valuable compounds. This study explores the application of high-pressure homogenization (HPH), an innovative nonthermal and green treatment, for the recovery of bioactive compounds from agri-food residues. The results demonstrate that the optimized HPH treatment offers advantages over conventional solid/liquid extraction (SLE), including shorter extraction time, solvent-free operation, low temperatures, and higher yields of phenol extraction (an approximately 20% improvement). Moreover, the micronization of agri-food residue-in-water suspensions results in a decrease in the size distribution to below the visual detection limit, achieved by disrupting the individual plant cells, thus enhancing suspension stability against sedimentation. These findings highlight the potential of HPH for environmentally friendly and efficient extraction processes.


Assuntos
Alimentos , Eliminação de Resíduos , Compostos Fitoquímicos , Solventes , Fenóis
3.
Compr Rev Food Sci Food Saf ; 17(4): 920-936, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33350116

RESUMO

Many proteins possess functional attributes that make them suitable for the encapsulation of bioactive agents, such as nutraceuticals and pharmaceuticals. This article reviews the state of the art of protein-based nanoencapsulation approaches. The physicochemical principles underlying the major techniques for the fabrication of nanoparticles, nanogels, and nanofibers from animal, botanical, and recombinant proteins are described. Protein modification approaches that can be used to extend their functionality in these nanocarrier systems are also described, including chemical, physical, and enzymatic treatments. The encapsulation, retention, protection, and release of bioactive agents in different protein-based nanocarriers are discussed. Finally, some of the major challenges in the design and fabrication of protein-based delivery systems are highlighted.

4.
Mar Drugs ; 14(11)2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27879659

RESUMO

Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including ß-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.


Assuntos
Biotecnologia/métodos , Carotenoides/química , Microalgas/química , Alga Marinha/química , Cromatografia com Fluido Supercrítico/métodos , Humanos , Micro-Ondas , Solventes/química
5.
Foods ; 13(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731786

RESUMO

This study primarily aimed to enhance the extraction of cutin from industrial tomato peel residues. Initially, the conventional extraction process was optimized using response surface methodology (RSM). Subsequently, high-pressure homogenization (HPH) was introduced to improve extraction efficiency and sustainability. The optimization process focused on determining the optimal conditions for conventional extraction via chemical hydrolysis, including temperature (100-130 °C), time (15-120 min), and NaOH concentration (1-3%). The optimized conditions, determined as 130 °C, 120 min, and 3% NaOH solution, yielded a maximum cutin extraction of 32.5%. Furthermore, the results indicated that applying HPH pre-treatment to tomato peels before alkaline hydrolysis significantly increased the cutin extraction yield, reaching 46.1%. This represents an approximately 42% increase compared to the conventional process. Importantly, HPH pre-treatment enabled cutin extraction under milder conditions using a 2% NaOH solution, reducing NaOH usage by 33%, while still achieving a substantial cutin yield of 45.6%. FT-IR analysis confirmed that cutin obtained via both conventional and HPH-assisted extraction exhibited similar chemical structures, indicating that the main chemical groups and structure of cutin remained unaltered by HPH treatment. Furthermore, cutin extracts from both conventional and HPH-assisted extraction demonstrated thermal stability up to approximately 200 °C, with less than 5% weight loss according to TGA analysis. These findings underscore the potential of HPH technology to significantly enhance cutin extraction yield from tomato peel residues while utilizing milder chemical hydrolysis conditions, thereby promoting a more sustainable and efficient cutin extraction process.

6.
Antioxidants (Basel) ; 12(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37891934

RESUMO

The principles of industrial ecology have emerged as pivotal drivers of eco-innovation, aiming to realize a "zero-waste" society where waste materials are repurposed as valuable resources. In this context, High-Pressure Homogenization (HPH) presents a promising, easily scalable micronization technology, capable of enhancing the extractability and bioaccessibility of bioactive compounds found in tomato processing by-products, which are notably abundant waste streams in the Mediterranean region. This study focuses on optimizing HPH treatment parameters to intensify the recovery of bioactive compounds from tomato pomace. Additionally, it investigates the multifaceted impacts of HPH on various aspects, including color, particle size distribution, microscopic characteristics, surface properties, bioactivity, and lycopene bioaccessibility through in vitro digestion simulations. The results demonstrate that the application of HPH under optimized conditions (80 MPa, 25 °C, 10 passes) induces a remarkable 8-fold reduction in mean particle size, reduced surface tension, improved physical stability, uniform color, increased total phenolic content (+31%), antioxidant activity (+30%), dietary fiber content (+9%), and lycopene bioaccessibility during the intestinal digestion phase compared to untreated samples. These encouraging outcomes support the proposition of integrating HPH technology into an environmentally friendly industrial process for the full valorization of tomato processing residues. By utilizing water as the sole solvent, this approach aims to yield a functional ingredient characterized by greater nutritional and health-promoting values.

7.
Food Chem ; 424: 136385, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37247597

RESUMO

Grape pomace (GP), the major winery by-product, is still rich in phenolic compounds, scarcely applied in food systems due to physicochemical instability issues. This work aimed at fabricating gliadin (G)-based nanoparticles through antisolvent precipitation, for delivery of GP extracts, investigating different extraction strategies with ethanol/water solution (70:30 v/v). Interestingly, the fabricated nanoparticles were characterized by a nanometric size range with hydraulic diameter values around 100 nm and ζ-potential of 18-22 mV. The addition of gum arabic (GA), at the optimized G/GA ratio 1:1, improved particle stability and encapsulation efficiency of GP polyphenols. The two-step extraction of GP in the G-rich solvent retrieved from G extraction, as evidenced by total phenolics (1.24 times higher than the two separately obtained extracts G/GP10:10), HPLC-PDA analysis, encapsulation efficiency (62.9% in terms of epicatechin), and simulated digestion (95.6% release of epicatechin), represented the most promising approach to obtain G nanoparticles for efficient delivery of GP extracts.


Assuntos
Catequina , Vitis , Vitis/química , Goma Arábica/química , Triticum , Gliadina , Fenóis/análise , Antioxidantes/análise , Extratos Vegetais/química
8.
Pharmaceutics ; 15(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36986788

RESUMO

Natural ingredients are gaining increasing attention from manufacturers following consumers' concerns about the excessive use of synthetic ingredients. However, the use of natural extracts or molecules to achieve desirable qualities throughout the shelf life of foodstuff and, upon consumption, in the relevant biological environment is severely limited by their poor performance, especially with respect to solubility, stability against environmental conditions during product manufacturing, storage, and bioavailability upon consumption. Nanoencapsulation can be seen as an attractive approach with which to overcome these challenges. Among the different nanoencapsulation systems, lipids and biopolymer-based nanocarriers have emerged as the most effective ones because of their intrinsic low toxicity following their formulation with biocompatible and biodegradable materials. The present review aims to provide a survey of the recent advances in nanoscale carriers, formulated with biopolymers or lipids, for the encapsulation of natural compounds and plant extracts.

9.
Foods ; 12(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37685154

RESUMO

This work proposes a biorefinery approach for utilizing tomato pomace (TP) through a top-down deconstructing strategy, combining mild chemical hydrolysis with high-pressure homogenization (HPH). The objective of the study is to isolate cellulose pulp using different combinations of chemical and physical processes: (i) direct HPH treatment of the raw material, (ii) HPH treatment following acid hydrolysis, and (iii) HPH treatment following alkaline hydrolysis. The results demonstrate that these isolation routes enable the production of cellulose with tailored morphological properties from TP with higher yields (up to +21% when HPH was applied before hydrolysis and approximately +6% when applied after acid or after alkaline hydrolysis). Additionally, the side streams generated by this cascade process show a four-fold increase in phenolic compounds when HPH is integrated after acid hydrolysis compared to untreated sample, and they also contain nanoparticles composed of hemicellulose and lignin, as shown by FT-IR and SEM. Notably, the further application of HPH treatment enables the production of nanostructured cellulose from cellulose pulp derived from TP, offering tunable properties. This approach presents a sustainable pathway for the extraction of cellulose and nanocellulose, as well as the valorization of value-added compounds found in residual biomass in the form of side streams.

10.
Gels ; 9(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38131944

RESUMO

(1) Background: Nanostructured cellulose has emerged as an efficient bio-adsorbent aerogel material, offering biocompatibility and renewable sourcing advantages. This study focuses on isolating (ligno)cellulose nanofibers ((L)CNFs) from barley straw and producing aerogels to develop sustainable and highly efficient decontamination systems. (2) Methods: (Ligno)cellulose pulp has been isolated from barley straw through a pulping process, and was subsequently deconstructed into nanofibers employing various pre-treatment methods (TEMPO-mediated oxidation process or PFI beater mechanical treatment) followed by the high-pressure homogenization (HPH) process. (3) Results: The aerogels made by (L)CNFs, with a higher crystallinity degree, larger aspect ratio, lower shrinkage rate, and higher Young's modulus than cellulose aerogels, successfully adsorb and remove organic dye pollutants from wastewater. (L)CNF-based aerogels, with a quality index (determined using four characterization parameters) above 70%, exhibited outstanding contaminant removal capacity over 80%. The high specific surface area of nanocellulose isolated using the TEMPO oxidation process significantly enhanced the affinity and interactions between hydroxyl and carboxyl groups of nanofibers and cationic groups of contaminants. The efficacy in adsorbing cationic dyes in wastewater onto the aerogels was verified by the Langmuir adsorption isotherm model. (4) Conclusions: This study offers insights into designing and applying advanced (L)CNF-based aerogels as efficient wastewater decontamination and environmental remediation platforms.

11.
J Sci Food Agric ; 92(6): 1171-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22095748

RESUMO

BACKGROUND: Zizyphus lotus seeds are an unutilized source of vegetable oil and protein and nothing has been reported on their physicochemical characteristics which would indicate the potential uses of these seeds. RESULTS: The percentage composition of the Zizyphus lotus seeds is (on a dry-weight basis): ash 1.05%, oil 32.92%, protein 19.11%, total carbohydrate 40.87% and moisture 6.05%. Calcium, potassium and magnesium constitute the major minerals of Zizyphus lotus seeds. The seed proteins are rich in threonine, glutamic acid, leucine, arginine and aspartic acid (26.73%, 17.28%, 13.11%, 9.47% and 7.76%, respectively). The main fatty acids of the oil are oleic (61.93%), linoleic (18.31%) and palmitic (9.14%) acids. Glycerol trioleate (OOO; O: oleic acid) was the most abundant triacylglycerol, representing 26.48% of the total triacyglycerols. ß-Tocopherol was the major tocopherol (130.47 mg 100 g(-1) ). This oil was rich in Δ7-campestrol and ß-sitosterol (147.82 and 82.10 mg 100 g(-1) oil), respectively. CONCLUSION: Zizyphus lotus seeds are rich in fat and protein which are of potential industrial significance. In addition, Zizyphus lotus L. seed oil contained many bioactive compounds. This fact is of great economic interest owing to several applications of Zizyphus lotus L. seeds in the food, cosmetics and medicinal industries.


Assuntos
Ácidos Graxos/análise , Micronutrientes/análise , Óleos de Plantas/química , Proteínas de Plantas/análise , Sementes/química , Ziziphus/química , Humanos , Valor Nutritivo
12.
Foods ; 11(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35804672

RESUMO

This study aimed to improve the effectiveness of Thymus capitatus and Thymus algeriensis essential oils (EOs), as food preservatives, through their encapsulation in different delivery systems (DSs), namely nanoemulsions and biopolymeric nanoparticles. DSs' preparation is tailored to enhance not only physical stability but also resulting Eos' antioxidant and antibacterial activities through different fabrication methods (high-pressure homogenization emulsification or antisolvent precipitation) and using different emulsifiers and stabilizers. DSs are characterized in terms of droplet size distribution, ζ-potential, and stability over time, as well as antioxidant and antibacterial activities of encapsulated EOs. The antioxidant activity was studied by the FRAP assay; the antibacterial activity was evaluated by the well diffusion method. EOs of different compositions were tested, namely two EOs extracted from Thymus capitatus, harvested from Tunisia during different periods of the year (TC1 and TC2), and one EO extracted from Thymus algeriensis (TA). The composition of TC1 was significantly richer in carvacrol than TC2 and TA. The most stable formulation was the zein-based nanoparticles prepared with TC1 and stabilized with maltodextrins, which exhibit droplet size, polydispersity index, ζ-potential, and encapsulation efficiency of 74.7 nm, 0.14, 38.7 mV, and 99.66%, respectively. This formulation led also to an improvement in the resulting antioxidant (60.69 µg/mg vs. 57.67 µg/mg for non-encapsulated TC1) and antibacterial (inhibition diameters varying between 12 and 33 mm vs. a range between 12 and 28 mm for non-encapsulated TC1) activities of EO. This formulation offers a promising option for the effective use of natural antibacterial bioactive molecules in the food industry against pathogenic and spoilage bacteria.

13.
Food Chem ; 367: 129982, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34375887

RESUMO

Rutin, a plant flavonol characterized by a wide range of biological effects, has limited application in foods because of its low water solubility and scarce bioavailability. This work aimed to investigate the encapsulation of a rutin-rich extract (200.6 ±â€¯1.5 mg/g of rutin) from Ruta chalepensis L. in zein nanoparticles (hydrodynamic diameter of 80-170 nm) prepared by antisolvent precipitation and stabilized by gum arabic (GA). The addition of GA (1:1 mass ratio with zein) significantly reduced the instability phenomena of zein nanoparticles through the deposition of a negatively charged layer as evidenced by the zeta potential and the UV-visible measurement, suggesting an electrostatic interaction between zein and GA. It also contributed to enhancing the encapsulation efficiency of rutin and inducing a rapid release during simulated digestion. These findings show that zein/GA nanoparticles represent a promising delivery system for natural extracts, fabricated through a facile and versatile process.


Assuntos
Nanopartículas , Ruta , Zeína , Goma Arábica , Tamanho da Partícula , Extratos Vegetais , Rutina
14.
Foods ; 11(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35159418

RESUMO

This work proposes a biorefinery approach for the utilization of agri-food residues, such as tomato pomace (TP), through combining chemical hydrolysis with high-pressure homogenization (HPH), aiming to achieve the isolation of cellulose with tailored morphological properties from underused lignocellulose feedstocks, along with the valorization of the value-added compounds contained in the biomass. Cellulose was isolated from TP using sequential chemical hydrolysis in combination with mechanical pretreatment through HPH. The chemical and structural features of cellulose isolated from TP pretreated by HPH were compared with cellulose isolated from untreated TP through light scattering for particle size distribution, optical and scanning electron microscopy, and Fourier-transform infrared spectroscopy (FT-IR) analysis. HPH pretreatment (80 MPa, 10 passes) not only promoted a slight increase in the yield of cellulose extraction (+9%) but contributed to directly obtaining defibrillated cellulose particles, characterized by smaller irregular domains containing elongated needle-like fibers. Moreover, the selected mild chemical process produced side streams rich in bioactive molecules, evaluated in terms of total phenols and reducing activity. The liquors recovered from acid hydrolysis of TP exhibited a higher biological activity than those obtained through a conventional extraction (80% v/v acetone, 25 °C, 24 h at 180 rpm).

15.
Foods ; 11(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35159621

RESUMO

In this study, a cascaded cell disintegration process, based on pulsed electric fields (PEF - 20 kV/cm, 100 kJ/kgSUSP.) and high-pressure homogenization (HPH - 150 MPa, 5 passes) was designed for the efficient and selective release of intracellular compounds (water-soluble proteins, carbohydrates, and lipids) from C. vulgaris suspensions during extraction in water (25 °C, 1 h) and ethyl acetate (25 °C, 3 h). Recovery yields of target compounds from cascaded treatments (PEF + HPH) were compared with those observed when applying PEF and HPH treatments individually. Particle size distribution and scanning electron microscopy analyses showed that PEF treatment alone did not induce any measurable effect on cell shape/structure, whereas HPH caused complete cell fragmentation and debris formation, with an undifferentiated release of intracellular matter. Spectra measurements demonstrated that, in comparison with HPH alone, cascaded treatments increased the selectivity of extraction and improved the yields of carbohydrates and lipids, while higher yields of water-soluble proteins were measured for HPH alone. This work, therefore, demonstrates the feasibility of sequentially applying PEF and HPH treatments in the biorefinery of microalgae, projecting a beneficial impact in terms of process economics due to the potential reduction of the energy requirements for separation/purification stages.

16.
Colloids Surf B Biointerfaces ; 197: 111424, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33099148

RESUMO

The structural design of essential oil emulsions can be exploited to modulate their antimicrobial activity, through the effect that the main formulation parameters (oil phase composition and type of emulsifier) have on the release of encapsulated antimicrobial compounds. In this work, different emulsions containing carvacrol, selected as model essential oil component, were characterized in terms of emulsions size, stability, and carvacrol release and solubilization, determined in Franz cells, and tested for minimum inhibitory and microbicidal concentration against P. fluorescens, S. epidermidis, and S. cerevisiae. The results showed that carvacrol fraction in the oil phase significantly affected oil viscosity, density, and O/W interfacial tension. Carvacrol solubilization in the aqueous phase, in equilibrium with the oil mixture, increased with the concentration of carvacrol in the oil phase and with the presence of an emulsifier/stabilizer in the aqueous phase. However, when encapsulated in emulsions carvacrol solubilization exhibited a weak dependence on carvacrol fraction in oil phase because part of the emulsifier/stabilizer was adsorbed at the O/W interface. Higher carvacrol solubilization was observed for WPM Pickering emulsions, followed by WPI and T80 emulsions. The antimicrobial activity was proportional to carvacrol solubilization, suggesting that emulsion droplets act as micrometric tanks for carvacrol, which is steadily released over time in the aqueous phase. The high carvacrol solubilization in the aqueous phase at higher carvacrol fractions in the oil phase (≥75% w/w) was also responsible for lower T80 and WPI emulsion stability because of coalescence, whereas all WPM emulsions exhibited signs of flocculation.


Assuntos
Anti-Infecciosos , Saccharomyces cerevisiae , Anti-Infecciosos/farmacologia , Cimenos , Emulsificantes , Emulsões , Água
17.
Antioxidants (Basel) ; 10(9)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34573049

RESUMO

Nowadays, the food industry is heavily involved in searching for green sources of valuable compounds, to be employed as potential food ingredients, to cater to the evolving consumers' requirements for health-beneficial food ingredients. In this frame, agri-food by-products represent a low-cost source of natural bioactive compounds, including antioxidants. However, to effectively recover these intracellular compounds, it is necessary to reduce the mass transfer resistances represented by the cellular envelope, within which they are localized, to enhance their extractability. To this purpose, emerging extraction technologies, have been proposed, including Supercritical Fluid Extraction, Microwave-Assisted Extraction, Ultrasound-Assisted Extraction, High-Pressure Homogenization, Pulsed Electric Fields, High Voltage Electrical Discharges. These technologies demonstrated to be a sustainable alternative to conventional extraction, showing the potential to increase the extraction yield, decrease the extraction time and solvent consumption. Additionally, in green extraction processes, also the contribution of solvent selection, as well as environmental and economic aspects, represent a key factor. Therefore, this review focused on critically analyzing the main findings on the synergistic effect of low environmental impact technologies and green solvents towards the green extraction of antioxidants from food by-products, by discussing the main associated advantages and drawbacks, and the criteria of selection for process sustainability.

18.
Foods ; 10(8)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34441663

RESUMO

This work aimed at studying the stabilization of O/W Pickering emulsions using nanosized cellulosic material, produced from raw cellulose or tomato pomace through different mechanical treatments, such as ball milling (BM) and high-pressure homogenization (HPH). The cellulose nanofibrils obtained via HPH, which exhibited longer fibers with higher flexibility than those obtained via ball milling, are characterized by lower interfacial tension values and higher viscosity, as well as better emulsion stabilization capability. Emulsion stability tests, carried out at 4 °C for 28 d or under centrifugation at different pH values (2.0, 7.0, and 12.0), revealed that HPH-treated cellulose limited the occurrence of coalescence phenomena and significantly slowed down gravitational separation in comparison with BM-treated cellulose. HPH-treated cellulose was responsible for the formation of a 3D network structure in the continuous phase, entrapping the oil droplets also due to the affinity with the cellulose nanofibrils, whereas BM-treated cellulose produced fibers with a more compact structure, which did adequately cover the oil droplets. HPH-treated tomato pomace gave similar results in terms of particle morphology and interfacial tension, and slightly lower emulsion stabilization capability than HPH-treated cellulose, suggesting that the used mechanical disruption process does not require cellulose isolation for its efficient defibrillation.

19.
Foods ; 9(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806512

RESUMO

In modern foods, the delivery systems for bioactive compounds play a fundamental role in health promotion, wellbeing, and disease prevention through diet. Nanotechnology has secured a fundamental role in the fabrication of delivery systems with the capability of modulating the in-product and in-body behavior for augmenting bioavailability and activity of bioactive compounds. Structured nanoemulsions and nanoparticles, liposomes, and niosomes can be designed to improve bioactives preservation after ingestion, mucoadhesion, as well as of their release and pathophysiological relevance. In the future, it is expected that the delivery systems will also contribute to augment the efficacy of the bioactive compounds, for example by improving the intestinal absorption and delivery in the bloodstream, as well as promoting the formation of additional bioactive metabolites by regulating the transformations taking place during digestion and the interaction with the intestinal microbiota.

20.
Food Funct ; 11(7): 6273-6284, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32602518

RESUMO

Mustard bran, a by-product of mustard production, is still rich in valuable compounds. The high-pressure homogenization treatment was tested as a mechanical cell disruption (MCD) technique to unlock valuable intracellular compounds. An aqueous suspension of mustard bran was treated by shear mixing, followed by high-pressure homogenization at different pressure levels (50-150 MPa) and number of passes (1-10), and using different homogenizing systems. The moderate-intensity treatment (up to 100 MPa and 3 passes) can deliver significant changes in the mustard bran suspension, inducing (a) a more homogeneous and smooth appearance due to the disruption of individual cells, (b) a better structuring ability in the suspension, through the increase in viscosity and storage and loss moduli G' and G'', as well as (c) a remarkable enhancement of protein release, up to 72% of total proteins. The controlling factor in the extent of MCD was found to be the specific energy transferred to the mustard bran suspensions, whereas no significant differences were recorded when varying the homogenization system. The MCD process of mustard bran, based on its physical treatments using only water as a suspension medium, can be regarded as a safe, clean and environmentally friendly technology platform, which contributes to reaching the zero-waste concept by transforming agro-food by-products into value-added ingredients, with enhanced functionality and bioactive content.


Assuntos
Manipulação de Alimentos/métodos , Mostardeira/química , Proteínas de Plantas/análise , Parede Celular/química , Digestão , Fenômenos Mecânicos , Tamanho da Partícula , Pressão , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA