Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hum Genet ; 67(3): 127-132, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34504271

RESUMO

Mutations in MLC1 cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare form of leukodystrophy characterized by macrocephaly, epilepsy, spasticity, and slow mental deterioration. Genetic studies of MLC are lacking from many parts of the world, especially in Sub-Saharan Africa. Genomic DNA was extracted for 67 leukodystrophic patients from 43 Sudanese families. Mutations were screened using the NGS panel testing 139 leukodystrophies and leukoencephalopathies causing genes (NextSeq500 Illumina). Five homozygous MLC1 variants were discovered in seven patients from five distinct families, including three consanguineous families from the same region of Sudan. Three variants were missense (c.971 T > G, p.Ile324Ser; c.344 T > C, p.Phe115Ser; and c.881 C > T, p.Pro294Leu), one duplication (c.831_838dupATATCTGT, p.Ser280Tyrfs*8), and one synonymous/splicing-site mutation (c.762 C > T, p.Ser254). The segregation pattern was consistent with autosomal recessive inheritance. The clinical presentation and brain MRI of the seven affected patients were consistent with the diagnosis of MLC1. Due to the high frequency of distinct MLC1 mutations found in our leukodystrophic Sudanese families, we analyzed the coding sequence of MLC1 gene in 124 individuals from the Sudanese genome project in comparison with the 1000-genome project. We found that Sudan has the highest proportion of deleterious variants in MLC1 gene compared with other populations from the 1000-genome project.


Assuntos
Cistos , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Megalencefalia , Cistos/diagnóstico , Cistos/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico por imagem , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Proteínas de Membrana/genética , Mutação
2.
Eur J Neurol ; 29(1): 329-334, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34541732

RESUMO

BACKGROUND AND PURPOSE: Diagnostic criteria for adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) due to colony-stimulating factor 1 receptor (CSF1R) mutation have recently been proposed. Our objective was to assess their accuracy in an independent multicenter cohort. METHODS: We evaluated the sensitivity and specificity of the diagnostic criteria for ALSP (including the "probable" and "possible" definitions) in a national cohort of 22 patients with CSF1R mutation, and 59 patients with an alternative diagnosis of adult onset inherited leukoencephalopathy. RESULTS: Overall, the sensitivity of the diagnostic criteria for ALSP was 82%, including nine of 22 patients diagnosed as probable and nine of 22 diagnosed as possible. Twenty of the 59 CSF1R mutation-negative leukoencephalopathies fulfilled the diagnostic criteria, leading to a specificity of 66%. CONCLUSIONS: Diagnostic criteria for ALSP have an overall limited sensitivity along with a modest specificity. We suggest that in patients suspected of genetic leukoencephalopathy, a comprehensive magnetic resonance imaging pattern-based approach is warranted, together with white matter gene panel or whole exome sequencing.


Assuntos
Leucoencefalopatias , Substância Branca , Adulto , Humanos , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Imageamento por Ressonância Magnética , Mutação , Neuroglia/patologia , Receptores de Fator Estimulador de Colônias/genética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
3.
Neuropediatrics ; 52(4): 302-309, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34192786

RESUMO

Hypomyelination and congenital cataract (HCC) is characterized by congenital cataract, progressive neurologic impairment, and diffuse myelin deficiency. This autosomal recessive disorder is caused by homozygous variant in the FAM126A gene. Five consanguineous Tunisian patients, belonging to three unrelated families, underwent routine blood tests, electroneuromyography, and magnetic resonance imaging of the brain. The direct sequencing of FAM126A exons was performed for the patients and their relatives. We summarized the 30 previously published HCC cases. All of our patients were carriers of a previously reported c.414 + 1G > T (IVS5 + 1G > T) variant, but the clinical spectrum was variable. Despite the absence of a phenotype-genotype correlation in HCC disease, screening of this splice site variant should be performed in family members at risk.


Assuntos
Catarata , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Catarata/congênito , Catarata/diagnóstico por imagem , Catarata/genética , Consanguinidade , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico por imagem , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Linhagem
4.
Am J Hum Genet ; 100(2): 257-266, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132689

RESUMO

Phenylketonuria (PKU, phenylalanine hydroxylase deficiency), an inborn error of metabolism, can be detected through newborn screening for hyperphenylalaninemia (HPA). Most individuals with HPA harbor mutations in the gene encoding phenylalanine hydroxylase (PAH), and a small proportion (2%) exhibit tetrahydrobiopterin (BH4) deficiency with additional neurotransmitter (dopamine and serotonin) deficiency. Here we report six individuals from four unrelated families with HPA who exhibited progressive neurodevelopmental delay, dystonia, and a unique profile of neurotransmitter deficiencies without mutations in PAH or BH4 metabolism disorder-related genes. In these six affected individuals, whole-exome sequencing (WES) identified biallelic mutations in DNAJC12, which encodes a heat shock co-chaperone family member that interacts with phenylalanine, tyrosine, and tryptophan hydroxylases catalyzing the BH4-activated conversion of phenylalanine into tyrosine, tyrosine into L-dopa (the precursor of dopamine), and tryptophan into 5-hydroxytryptophan (the precursor of serotonin), respectively. DNAJC12 was undetectable in fibroblasts from the individuals with null mutations. PAH enzyme activity was reduced in the presence of DNAJC12 mutations. Early treatment with BH4 and/or neurotransmitter precursors had dramatic beneficial effects and resulted in the prevention of neurodevelopmental delay in the one individual treated before symptom onset. Thus, DNAJC12 deficiency is a preventable and treatable cause of intellectual disability that should be considered in the early differential diagnosis when screening results are positive for HPA. Sequencing of DNAJC12 may resolve any uncertainty and should be considered in all children with unresolved HPA.


Assuntos
Distonia/genética , Deficiência Intelectual/genética , Fenilcetonúrias/genética , Proteínas Repressoras/genética , Alelos , Sequência de Aminoácidos , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Estudos de Casos e Controles , Dopamina/deficiência , Dopamina/metabolismo , Éxons , Feminino , Fibroblastos/metabolismo , Deleção de Genes , Estudo de Associação Genômica Ampla , Proteínas de Choque Térmico HSP70/genética , Humanos , Masculino , Linhagem , Fenilalanina/metabolismo , Fenilalanina Hidroxilase/genética , Serotonina/deficiência , Serotonina/metabolismo , Triptofano/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Tirosina/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Ann Neurol ; 85(3): 385-395, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30635937

RESUMO

OBJECTIVE: SLC13A3 encodes the plasma membrane Na+ /dicarboxylate cotransporter 3, which imports inside the cell 4 to 6 carbon dicarboxylates as well as N-acetylaspartate (NAA). SLC13A3 is mainly expressed in kidney, in astrocytes, and in the choroid plexus. We describe two unrelated patients presenting with acute, reversible (and recurrent in one) neurological deterioration during a febrile illness. Both patients exhibited a reversible leukoencephalopathy and a urinary excretion of α-ketoglutarate (αKG) that was markedly increased and persisted over time. In one patient, increased concentrations of cerebrospinal fluid NAA and dicarboxylates (including αKG) were observed. Extensive workup was unsuccessful, and a genetic cause was suspected. METHODS: Whole exome sequencing (WES) was performed. Our teams were connected through GeneMatcher. RESULTS: WES analysis revealed variants in SLC13A3. A homozygous missense mutation (p.Ala254Asp) was found in the first patient. The second patient was heterozygous for another missense mutation (p.Gly548Ser) and an intronic mutation affecting splicing as demonstrated by reverse transcriptase polymerase chain reaction performed in muscle tissue (c.1016 + 3A > G). Mutations and segregation were confirmed by Sanger sequencing. Functional studies performed on HEK293T cells transiently transfected with wild-type and mutant SLC13A3 indicated that the missense mutations caused a marked reduction in the capacity to transport αKG, succinate, and NAA. INTERPRETATION: SLC13A3 deficiency causes acute and reversible leukoencephalopathy with marked accumulation of αKG. Urine organic acids (especially αKG and NAA) and SLC13A3 mutations should be screened in patients presenting with unexplained reversible leukoencephalopathy, for which SLC13A3 deficiency is a novel differential diagnosis. ANN NEUROL 2019;85:385-395.


Assuntos
Ácido Aspártico/análogos & derivados , Ácidos Cetoglutáricos/metabolismo , Leucoencefalopatias/genética , Simportadores/genética , Adolescente , Ácido Aspártico/líquido cefalorraquidiano , Ácido Aspártico/metabolismo , Pré-Escolar , Feminino , Células HEK293 , Humanos , Ácidos Cetoglutáricos/líquido cefalorraquidiano , Ácidos Cetoglutáricos/urina , Leucoencefalopatias/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Mutação de Sentido Incorreto , Linhagem , Infecções Respiratórias , Ácido Succínico/metabolismo , Simportadores/metabolismo , Tonsilite , Sequenciamento do Exoma
6.
Brain ; 140(10): 2550-2556, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28969374

RESUMO

Hypomyelinating leukodystrophies are genetically heterogeneous disorders with overlapping clinical and neuroimaging features reflecting variable abnormalities in myelin formation. We report on the identification of biallelic inactivating mutations in NKX6-2, a gene encoding a transcription factor regulating multiple developmental processes with a main role in oligodendrocyte differentiation and regulation of myelin-specific gene expression, as the cause underlying a previously unrecognized severe variant of hypomyelinating leukodystrophy. Five affected subjects (three unrelated families) were documented to share biallelic inactivating mutations affecting the NKX6-2 homeobox domain. A trio-based whole exome sequencing analysis in the first family detected a homozygous frameshift change [c.606delinsTA; p.(Lys202Asnfs*?)]. In the second family, homozygosity mapping coupled to whole exome sequencing identified a homozygous nucleotide substitution (c.565G>T) introducing a premature stop codon (p.Glu189*). In the third family, whole exome sequencing established compound heterozygosity for a non-conservative missense change affecting a key residue participating in DNA binding (c.599G>A; p.Arg200Gln) and a nonsense substitution (c.589C>T; p.Gln197*), in both affected siblings. The clinical presentation was homogeneous, with four subjects having severe motor delays, nystagmus and absent head control, and one individual showing gross motor delay at the age of 6 months. All exhibited neuroimaging that was consistent with hypomyelination. These findings define a novel, severe form of leukodystrophy caused by impaired NKX6-2 function.


Assuntos
Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Leucoencefalopatias/genética , Mutação/genética , Adolescente , Criança , Pré-Escolar , Consanguinidade , Análise Mutacional de DNA , Potenciais Evocados Auditivos do Tronco Encefálico , Saúde da Família , Feminino , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/patologia , Leucoencefalopatias/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Modelos Moleculares
7.
Metab Brain Dis ; 32(6): 2149-2154, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28868593

RESUMO

Sengers syndrome is a rare autosomal recessive metabolic disorder caused by lack of acylglycerol kinase due to mutations in the AGK gene. It is characterized by congenital cataract, hypertrophic cardiomyopathy, myopathy and lactic acidosis. Two clinical forms have been described: a severe neonatal form, and a more benign form displaying exercise intolerance. We describe two siblings with congenital cataract, cardiomyopathy, hypotonia, intellectual disability and lactic acidosis. Whole exome sequencing revealed a homozygous c.1035dup mutation in the two siblings, supporting a diagnosis of Sengers syndrome. Our patients presented an intermediate form with intellectual deficiency, an unusual feature in Sengers syndrome. This permitted a prenatal diagnosis for a following pregnancy.


Assuntos
Cardiomiopatias/genética , Catarata/genética , Deficiência Intelectual/genética , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Criança , Pré-Escolar , Humanos , Masculino , Fenótipo , Irmãos
8.
Am J Hum Genet ; 93(3): 579-86, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24011989

RESUMO

BAP31 is one of the most abundant endoplasmic reticulum (ER) membrane proteins. It is a chaperone protein involved in several pathways, including ER-associated degradation, export of ER proteins to the Golgi apparatus, and programmed cell death. BAP31 is encoded by BCAP31, located in human Xq28 and highly expressed in neurons. We identified loss-of-function mutations in BCAP31 in seven individuals from three families. These persons suffered from motor and intellectual disabilities, dystonia, sensorineural deafness, and white-matter changes, which together define an X-linked syndrome. In the primary fibroblasts of affected individuals, we found that BCAP31 deficiency altered ER morphology and caused a disorganization of the Golgi apparatus in a significant proportion of cells. Contrary to what has been described with transient-RNA-interference experiments, we demonstrate that constitutive BCAP31 deficiency does not activate the unfolded protein response or cell-death effectors. Rather, our data demonstrate that the lack of BAP31 disturbs ER metabolism and impacts the Golgi apparatus, highlighting an important role for BAP31 in ER-to-Golgi crosstalk. These findings provide a molecular basis for a Mendelian syndrome and link intracellular protein trafficking to severe congenital brain dysfunction and deafness.


Assuntos
Surdez/genética , Distonia/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Complexo de Golgi/patologia , Proteínas de Membrana/genética , Mutação/genética , Bainha de Mielina/patologia , Forma Celular , Criança , Pré-Escolar , Surdez/complicações , Distonia/complicações , Feminino , Fibroblastos/patologia , Fibroblastos/ultraestrutura , Predisposição Genética para Doença , Complexo de Golgi/ultraestrutura , Humanos , Lactente , Masculino , Bainha de Mielina/ultraestrutura , Linhagem , Fenótipo , Adulto Jovem
9.
Neurol Sci ; 37(3): 403-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26577183

RESUMO

Arylsulfatase A (ASA) is a lysosomal enzyme involved in the catabolism of cerebroside sulfate. ASA deficiency is associated with metachromatic leukodystrophy (MLD). Low ASA activities have also been reported in a more common condition with no apparent clinical consequences termed ASA pseudo-deficiency (ASA-PD) which is associated with two linked mutations in the ASA gene (c.1049A>G and c.*96A>G). This study aimed to investigate the frequency of the two ASA-PD variants and their linkage disequilibrium (LD) among Tunisians. ASA-PD variants were detected in 129 healthy Tunisians and their frequencies were compared to those described worldwide. The frequency of the PD allele was estimated at 17.4% for the overall sample, with c.1049A>G and c.*96A>G frequencies of 25.6 and 17.4%, respectively. This study also revealed a high LD between the two ASA-PD variants (r(2) = 0.61). Inter-population analysis revealed similarities in the ASA-PD genetic structure between Tunisians and populations from Middle East with c.*96A>G frequencies being the highest in the world. A significant North vs. South genetic differentiation in the ASA-PD frequency was also observed in Tunisian population who seems genetically intermediate between Africans, Middle-Easterners and Europeans. This is the first report on the allele frequency of the ASA-PD in North Africa, revealing a relatively high frequency of the PD allele among Tunisians. This study gives also evidence on the importance of discriminating ASA-PD allele from pathological mutations causing MLD and supporting enzymatic activity testing with both sulfatiduria determination and genetic testing in the differential diagnosis of MLD in the Tunisian population.


Assuntos
Cerebrosídeo Sulfatase/deficiência , Cerebrosídeo Sulfatase/genética , Frequência do Gene , Adulto , Alelos , População Negra/genética , Técnicas de Genotipagem , Haplótipos , Humanos , Desequilíbrio de Ligação , Mutação , Polimorfismo Genético , Prevalência , Análise de Componente Principal , Tunísia/epidemiologia , População Branca/genética
10.
BMC Med Genet ; 16: 77, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26329556

RESUMO

BACKGROUND: Pelizaeus-Merzbacher disease (PMD) is an X-linked dysmyelinating disorder characterized by nystagmus, hypotonia, ataxia, progressive spasticity, and cognitive decline. PMD classically results from a duplication of a genomic segment encompassing the entire PLP1 gene. Since the PLP1 gene is located in Xq22, PMD affects mostly boys. METHODS AND RESULTS: Here we report the case of a girl with typical PMD. Copy number analysis of the PLP1 locus revealed a duplication of the entire gene and FISH analysis showed that the extra copy of the PLP1 gene was actually inserted in chromosome 1p36. This insertion of an additional copy of PLP1 in an autosome led to a functional duplication irrespective of the X-inactivation pattern. Subsequent overexpression of PLP1 was the cause of the PMD phenotype observed in this girl. Further sequencing of the breakpoint junction revealed a microhomology and thus suggested a replication based mechanism (such as FoSTeS or MMBIR). CONCLUSION: This case emphasizes the susceptibility of the PLP1 locus to complex rearrangement likely driven by the Xq22 local genomic architecture. In addition, careful consideration should be given to girls with classical PMD clinical features since they usually experience complex PLP1 genomic alteration with a distinct risk of inheritance.


Assuntos
Cromossomos Humanos Par 1/genética , Duplicação Gênica/genética , Mutagênese Insercional/genética , Proteína Proteolipídica de Mielina/genética , Doença de Pelizaeus-Merzbacher/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Imageamento por Ressonância Magnética , Análise em Microsséries , Doença de Pelizaeus-Merzbacher/patologia , Inativação do Cromossomo X/genética
12.
BMC Neurol ; 15: 244, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26607867

RESUMO

BACKGROUND: X-linked adrenoleukodystrophy (X-ALD; OMIM: 300100) is the most common peroxisomal disease caused by mutations in the ATP-binding cassette, sub-family D member 1 gene or ABCD1 (geneID: 215), the coding gene for the adrenoleukodystrophy protein (ALDP), which is an ATP-binding transport protein associated to an active transport of very long chain fatty acids (VLCFAs). Dysfunction of ALDP induces an accumulation of VLCFAs in all tissues leading to a neurodegenerative disorder that involves the nervous system white matter. CASE PRESENTATION: In our case report, magnetic resonance imaging (MRI) as well as the high levels of VLCFAs prompted the diagnosis the X-ALD. Molecular analysis of ABCD1 gene have shown a pathogenic homozygous nonsense mutation (c.1677C > G; p.(Tyr559*)) in exon 7. CONCLUSION: Thus, we identified here a novel mutation in the ABCD1 gene in a Moroccan patient causing X-linked adrenoleukodystrophy.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Códon sem Sentido , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Criança , Éxons , Homozigoto , Humanos , Masculino , Marrocos
13.
Am J Hum Genet ; 89(3): 415-23, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21855841

RESUMO

Leukodystrophies are a heterogeneous group of inherited neurodegenerative disorders characterized by abnormal white matter visible by brain imaging. It is estimated that at least 30% to 40% of individuals remain without a precise diagnosis despite extensive investigations. We mapped tremor-ataxia with central hypomyelination (TACH) to 10q22.3-23.1 in French-Canadian families and sequenced candidate genes within this interval. Two missense and one insertion mutations in five individuals with TACH were uncovered in POLR3A, which codes for the largest subunit of RNA polymerase III (Pol III). Because these families were mapped to the same locus as leukodystrophy with oligodontia (LO) and presented clinical and radiological overlap with individuals with hypomyelination, hypodontia and hypogonadotropic hypogonadism (4H) syndrome, we sequenced this gene in nine individuals with 4H and eight with LO. In total, 14 recessive mutations were found in 19 individuals with TACH, 4H, or LO, establishing that these leukodystrophies are allelic. No individual was found to carry two nonsense mutations. Immunoblots on 4H fibroblasts and on the autopsied brain of an individual diagnosed with 4H documented a significant decrease in POLR3A levels, and there was a more significant decrease in the cerebral white matter compared to that in the cortex. Pol III has a wide set of target RNA transcripts, including all nuclear-coded tRNA. We hypothesize that the decrease in POLR3A leads to dysregulation of the expression of certain Pol III targets and thereby perturbs cytoplasmic protein synthesis. This type of broad alteration in protein synthesis is predicted to occur in other leukoencephalopathies such as hypomyelinating leukodystrophy-3, caused by mutations in aminoacyl-tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1).


Assuntos
Cromossomos Humanos Par 10/genética , Predisposição Genética para Doença/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Modelos Moleculares , RNA Polimerase III/genética , Tremor/genética , Sequência de Aminoácidos , Sequência de Bases , Genes Recessivos/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Humanos , Dados de Sequência Molecular , Mutagênese Insercional/genética , Mutação de Sentido Incorreto/genética , Quebeque , RNA Polimerase III/química , Análise de Sequência de DNA , Tremor/patologia
14.
BMC Med Genomics ; 15(1): 236, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348459

RESUMO

BACKGROUND: The etiology of intellectual disabilities is diverse and includes both genetic and environmental factors. The genetic causes of intellectual disabilities range from chromosomal aberrations to single gene disorders. The TRAPPC9 gene has been reported to cause autosomal recessive forms of intellectual disabilities in 56 patients from consanguineous and non-consanguineous families around the world. METHODS: We analyzed two siblings with intellectual disability, microcephaly and delayed motor and speech development from a consanguineous Sudanese family. Genomic DNA was screened for mutations using NGS panel (NextSeq500 Illumina) testing 173 microcephaly associated genes in the Molecular Genetics service in Robert Debre hospital in Paris, France. RESULTS: A novel homozygous mutation (NM_031466.7 (TRAPPC9):c.2288dup, p. (Val764Glyfs*7) in exon 14 of TRAPPC9 gene was found in the two patients. The mutation was predicted to cause nonsense mediated decay (NSMD) using SIFT prediction tool. The variant has not been found in either gnomAD or Exac databases. Both parents were heterozygous (carriers) to the mutation. CONCLUSION: This is the first study to report patients with TRAPPC9-related disorder from Sub-Saharan Africa.


Assuntos
Deficiência Intelectual , Microcefalia , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Proteínas de Transporte/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação , Linhagem
15.
Front Genet ; 13: 883211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719383

RESUMO

Pontocerebellar hypoplasia type 10 (PCH10) is a very rare autosomal recessive neurodegenerative disease characterized by intellectual disability, microcephaly, severe developmental delay, pyramidal signs, mild cerebellar atrophy, and white matter changes in the brain, as shown by magnetic resonance imaging (MRI). The disease has been described in only twenty-one patients from ten Turkish families with a founder missense pathogenic variant in the CLP1 gene involved in tRNA processing and maturation. We analyzed three siblings from a consanguineous Sudanese family who presented with intellectual disability, dysmorphic features, developmental delay, regression of milestones, microcephaly, epilepsy, extrapyramidal signs, mild pontine, and cerebellar atrophy. We identified through whole-exome sequencing the same pathogenic variant (c.419G>A; p(Arg140His) reported before in all Turkish families. Our study extends the phenotypes of PCH10 and reports for the first time cases with PCH10 of non-Turkish origin.

16.
J Bacteriol ; 192(7): 1832-43, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20118249

RESUMO

The interaction of Crohn's disease (CD)-associated adherent-invasive Escherichia coli (AIEC) strain LF82 with intestinal epithelial cells depends on surface appendages, such as type 1 pili and flagella. Histone-like proteins operate as global regulators to control the expression of these virulence factors. We evaluated the role of histone-like proteins in AIEC reference strain LF82 during infection of intestinal epithelial cells, Intestine-407, and observed that the fis mRNA level was decreased. The role of Fis in AIEC LF82 was determined by studying the phenotype of an LF82 fis::Km mutant. This was the first mutant of strain LF82 that has been described thus far that is unable to express flagellin but still able to produce type 1 pili. The cyclic-di-GMP pathway linking flagella and type 1 pilus expression is not involved in Fis-mediated regulation, and we identified in the present study Fis-binding sites located upstream of the fimE gene and in the intergenic region between fimB and nanC of the fim operon encoding type 1 pili. The major consequence of decreased Fis expression in AIEC bacteria in contact with host cells is a direct downregulation of fimE expression, leading to the preferential ON phase of the fimS element. Thus, by maintaining type 1 pilus expression, AIEC bacteria, which interact with the gut mucosa, have greater ability to colonize and to induce inflammation in CD patients.


Assuntos
Aderência Bacteriana , Doença de Crohn/microbiologia , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/biossíntese , Escherichia coli/patogenicidade , Fator Proteico para Inversão de Estimulação/biossíntese , Regulação Bacteriana da Expressão Gênica , Proteínas da Membrana Bacteriana Externa/genética , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/genética , Fímbrias Bacterianas/fisiologia , Deleção de Genes , Perfilação da Expressão Gênica , Humanos , Integrases/genética , Mutagênese Insercional , Porinas/genética , Regiões Promotoras Genéticas
17.
Ann Clin Transl Neurol ; 7(1): 144-152, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31912665

RESUMO

Genetic white matter disorders have heterogeneous etiologies and overlapping clinical presentations. We performed a study of the diagnostic efficacy of genome sequencing in 41 unsolved cases with prior exome sequencing, resolving an additional 14 from an historical cohort (n = 191). Reanalysis in the context of novel disease-associated genes and improved variant curation and annotation resolved 64% of cases. The remaining diagnoses were directly attributable to genome sequencing, including cases with small and large copy number variants (CNVs) and variants in deep intronic and technically difficult regions. Genome sequencing, in combination with other methodologies, achieved a diagnostic yield of 85% in this retrospective cohort.


Assuntos
Leucoencefalopatias/diagnóstico , Leucoencefalopatias/genética , Sistema de Registros , Sequenciamento Completo do Genoma , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Leucoencefalopatias/patologia , Masculino , Linhagem
19.
Mol Genet Genomic Med ; 7(9): e914, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31368241

RESUMO

INTRODUCTION: RNA polymerase III (Pol III)-related leukodystrophies are a group of autosomal recessive neurodegenerative disorders caused by mutations in POLR3A and POLR3B. Recently a recessive mutation in POLR1C causative of Pol III-related leukodystrophies was identified. METHODS: We report the case of a Tunisian girl of 14 years of age who was referred to our department for evaluation of progressive ataxia that began at the age of 5. Genetic diagnosis was performed by NGS and Sanger analysis. In silico predictions were performed using SIFT, PolyPhen-2, and Mutation Taster. RESULTS: Neurological examination showed cerebellar and tetrapyramidal syndrome, mixed movement disorders with generalized dystonia and severe myoclonus leading to death at 25 years. Brain MRI scans showed diffuse hypomyelination associated with cerebellar atrophy. It also showed bilateral T2 hypointensity of the ventrolateral thalamus, part of the posterior limb of the internal capsule, the substantia nigra and the subthalamic nucleus. Next generation sequencing leukodystrophy panel including POLR3A and POLR3B was negative. Sanger sequencing of the coding regions of POLR1C revealed a novel homozygous mutation. CONCLUSION: The clinical and imaging findings of patients with POLR1C hypomyelinating leukodystrophy are reviewed. Interestingly, severe myoclonic dystonia and T2 hypointensity of the substantia nigra and the subthalamic nucleus are not reported yet and could be helpful for the diagnosis of POLR1C hypomyelinating leukodystrophy.


Assuntos
Encefalopatias Metabólicas Congênitas , RNA Polimerases Dirigidas por DNA/genética , Distúrbios Distônicos , Imageamento por Ressonância Magnética , RNA Polimerase III/genética , Substância Negra/diagnóstico por imagem , Núcleo Subtalâmico/diagnóstico por imagem , Adolescente , Encefalopatias Metabólicas Congênitas/diagnóstico por imagem , Encefalopatias Metabólicas Congênitas/genética , Distúrbios Distônicos/diagnóstico por imagem , Distúrbios Distônicos/genética , Feminino , Humanos
20.
NPJ Genom Med ; 4: 17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341639

RESUMO

Neuro-ichthyotic syndromes are a group of rare genetic diseases mainly associated with perturbations in lipid metabolism, intracellular vesicle trafficking, or glycoprotein synthesis. Here, we report a patient with a neuro-ichthyotic syndrome associated with deleterious mutations in the ALDH1L2 (aldehyde dehydrogenase 1 family member L2) gene encoding for mitochondrial 10-formyltetrahydrofolate dehydrogenase. Using fibroblast culture established from the ALDH1L2-deficient patient, we demonstrated that the enzyme loss impaired mitochondrial function affecting both mitochondrial morphology and the pool of metabolites relevant to ß-oxidation of fatty acids. Cells lacking the enzyme had distorted mitochondria, accumulated acylcarnitine derivatives and Krebs cycle intermediates, and had lower ATP and increased ADP/AMP indicative of a low energy index. Re-expression of functional ALDH1L2 enzyme in deficient cells restored the mitochondrial morphology and the metabolic profile of fibroblasts from healthy individuals. Our study underscores the role of ALDH1L2 in the maintenance of mitochondrial integrity and energy balance of the cell, and suggests the loss of the enzyme as the cause of neuro-cutaneous disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA