Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; : 119708, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089443

RESUMO

A lack of chronic rare earth element (REE) toxicity data for marine organisms has impeded the establishment of numerical REE water quality benchmarks (e.g., guidelines) to protect marine life and assess ecological risk. This study determined the chronic no (significant) effect concentrations (N(S)ECs) and median-effect concentrations (EC50s) of eight key REEs (yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy) and lutetium (Lu)) for 30 coastal marine organisms (encompassing 22 phyla and five trophic levels from temperate and tropical habitats). Organisms with calcifying life stages were most vulnerable to REEs, which competitively inhibit calcium uptake. The most sensitive organism was a sea urchin, with N(S)ECs ranging from 0.64 µg/L for Y to 1.9 µg/L for La and Pr, and EC50s ranging from 4.3 µg/L for Y to 14.4 µg/L for Pr. Conversely, the least sensitive organism was a cyanobacterium, with N(S)ECs ranging from 21 µg/L for Y to 73 µg/L for Pr, and EC50s ranging from 153 µg/L for Y to 535 µg/L for La. Median sensitivity varied 215-fold across all organisms. The two-fold difference in median toxicity (µmol/L EC50) among REEs (Y∼Gd > Lu∼Nd∼Dy∼Ce > La∼Pr) was attributed to offset differences in binding affinity (log K) to cell surface receptors and the percentage of free metal ion (REE3+) in the test waters. The toxicity (EC50) of the remaining REEs (samarium, europium, terbium, holmium, thulium and ytterbium) was predicted using a combination of physicochemical data and measured EC50s for the eight tested REEs, with good agreement between predicted and measured EC50s for selected organisms. Numerical REE water quality guidelines to protect marine life were established using species sensitivity distributions (e.g., for 95 % species protection, values ranged from 1.1 µg/L for Y to 3.0 µg/L for La, Pr or Lu).

2.
Mar Pollut Bull ; 192: 114964, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201346

RESUMO

A lack of thallium (Tl) toxicity data for marine organisms has hampered the development of water quality guidelines for protecting marine life and assessing ecological hazard/risk. This study assessed the toxicity (EC10/EC50) of Tl in natural seawater (salinity 34 psu and pH 8.05) to 26 functionally diverse marine organisms (19 phyla from five trophic levels) from a variety of temperate and tropical coastal marine habitats. EC10 values ranged from 3.0 µg/L (copepod, Acartia tranteri) to 489 µg/L (cyanobacterium, Cyanobium sp.), while EC50 values ranged from 9.7 µg/L to 1550 µg/L. Thallium(I) was the dominant (86-99 %) oxidation state in test waters across the range of EC10 and EC50 values. Thallium toxicity (EC10/EC50) did not differ between temperate and tropical marine organisms. New, reliable, long-term Tl water quality guidelines were derived using species sensitivity distributions (with model-averaging) to protect marine life in Australia (e.g., 3.9 µg/L for 95 % species protection).


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Qualidade da Água , Organismos Aquáticos , Tálio/toxicidade , Poluentes Químicos da Água/análise , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA