Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 58(13): 8419-8431, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31179696

RESUMO

Luminescent silver(I) halogenido coordination polymers [Ag2X2(PPh3)2(bpy)] n (X = I, Br, Cl) have been prepared. The iodido and bromido complexes exhibit strong blue phosphorescence assignable to the 3π-π*-excited-state of bpy, whereas the chlorido complex shows luminescence thermochromism due to the π-π*-state of bpy and charge transfer from the {Ag2Cl2} core to the bpy π*-orbital. Taking advantage of their structural similarities, we prepared a series of mixed-halogenido silver(I) complexes [Ag2(X xX'(1- x))2(PPh3)2(bpy)] n (X, X' = I, Br, Cl) at varying molar fractions as solid solutions. The mixed-halogenido complexes are as strongly luminescent as their parent complexes. The detailed study of their structure and emissive properties revealed smooth energy migration between the luminescent units and modification of the luminescence properties based on the planarity of bpy.

2.
J Am Chem Soc ; 132(43): 15286-98, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-20939574

RESUMO

We synthesized and investigated a new series of metal-hydrazone complexes, including deprotonated [MX(mtbhp)] and protonated forms [MX(Hmtbhp)](ClO(4)) (M = Pd(2+), Pt(2+); X = Cl(-), Br(-); Hmtbhp = 2-(2-(2-(methylthio)benzylidene)hydrazinyl)pyridine) and hydrogen-bonded proton-transfer (HBPT) assemblies containing [PdBr(mtbhp)] and bromanilic acid (H(2)BA). The mtbhp hydrazone ligand acts as a tridentate SNN ligand and provides a high proton affinity. UV-vis spectroscopy revealed that these metal-hydrazone complexes follow a reversible protonation-deprotonation reaction ([MX(mtbhp)] + H(+) ⇋ [MX(Hmtbhp)](+)), resulting in a remarkable color change from red to yellow. Reactions between proton acceptor [PdBr(mtbhp)] (A) and proton donor H(2)BA (D) afforded four types of HBPT assemblies with different D/A ratios: for D/A = 1:1, {[PdBr(Hmtbhp)](HBA)·Acetone} and {[PdBr(Hmtbhp)](HBA)·2(1,4-dioxane)}; for D/A = 1:2, [PdBr(Hmtbhp)](2)(BA); and for D/A = 3:2, {[PdBr(Hmtbhp)](2)(HBA)(2)(H(2)BA)·2Acetonitrile}. The proton donor gave at least one proton to the acceptor to form the hydrogen bonded A···D pair of [PdBr(Hmtbhp)](+)···HBA(-). The strength of the hydrogen bond in the pair depends on the kind of molecule bound to the free monoanionic bromanilate OH group. Low-temperature IR spectra (T < 150 K) showed that the hydrogen bond distance between [PdBr(Hmtbhp)](+) and bromanilate was short enough (ca. 2.58 Å) to induce proton migration in the [PdBr(Hmtbhp)](2)(BA) assembly in the solid state. The hydrogen bonds formed not only between [PdBr(Hmtbhp)](+) and HBA(-) but also between HBA(-) and neutral H(2)BA molecules in the {[PdBr(Hmtbhp)](2)(HBA)(2)(H(2)BA)·2Acetonitrile} assembly. The H(2)BA-based flexible hydrogen bond network and strong acidic host structure result in an interesting vapor adsorption ability and vapochromic behavior in this assembly because the vapor-induced rearrangement of the hydrogen bond network, accompanied by changes in π-π stacking interactions, provides a recognition ability of proton donating and accepting properties of the vapor molecule.

3.
Dalton Trans ; 39(8): 1989-95, 2010 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-20148216

RESUMO

Zinc(ii)-quinoxaline complexes, [Zn(hqxc)(2)(py)(2)] and [Zn(hqxc)(2)(DMSO)(2)] (hqxc = 3-hydroxy-2-quinoxalinecarboxylate, py = pyridine, DMSO = dimethyl sulfoxide), were prepared and characterized by X-ray crystallography and fluorescence spectroscopy. In both complexes, the zinc ion is six-coordinated by two equatorial bidentate hqxc ligands with an intramolecular hydrogen bond and two axial monodentate ligands such as pyridine or DMSO. In spite of similar coordination geometries, there is a remarkable difference between their solid-state fluorescent properties. The pyridine complex is strongly fluorescent (fluorescence quantum yield Phi = 0.22), giving rise to a significantly Stokes-shifted spectrum. From its thin film photopumped by a nitrogen gas laser, amplified spontaneous emission was observed. These results suggest that the fluorescence occurs by way of excited-state intramolecular proton-transfer (ESIPT) in the hydrogen bond of hqxc. On the other hand, the DMSO complex shows fluorescent intensity (Phi = 0.08) lower than that of the pyridine complex, and shows normal emission in addition to ESIPT emission. From IR measurements for these complexes, it is concluded that axial ligands influence the hydrogen bond strength of the equatorial hqxc ligand via zinc and thus the ESIPT efficiency.


Assuntos
Complexos de Coordenação/química , Corantes Fluorescentes/química , Compostos Organometálicos/química , Prótons , Quinoxalinas/química , Zinco/química , Cristalografia por Raios X , Ligação de Hidrogênio , Ligantes , Conformação Molecular , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA