RESUMO
Icaritin is a prenylflavonoid derivative of the genus Epimedium (Berberidaceae) and has a variety of pharmacological actions. Icaritin is approved by the National Medical Products Administration as an anticancer drug that exhibits efficacy and safety advantages in patients with hepatocellular carcinoma cells. This study aimed to evaluate the inhibitory effects of icaritin on UDP-glucuronosyltransferase (UGT) isoforms. 4-Methylumbelliferone (4-MU) was employed as a probe drug for all the tested UGT isoforms using in vitro human liver microsomes (HLM). The inhibition potentials of UGT1A1 and 1A9 in HLM were further tested by employing 17ß-estradiol (E2) and propofol (PRO) as probe substrates, respectively. The results showed that icaritin inhibits UGT1A1, 1A3, 1A4, 1A7, 1A8, 1A10, 2B7, and 2B15. Furthermore, icaritin exhibited a mixed inhibition of UGT1A1, 1A3, and 1A9, and the inhibition kinetic parameters (Ki) were calculated to be 3.538, 2.117, and 0.306 (µM), respectively. The inhibition of human liver microsomal UGT1A1 and 1A9 both followed mixed mechanism, with Ki values of 2.694 and 1.431 (µM). This study provides supporting information for understanding the drug-drug interaction (DDI) potential of the flavonoid icaritin and other UGT-metabolized drugs in clinical settings. In addition, the findings provide safety evidence for DDI when liver cancer patients receive a combination therapy including icaritin.
Assuntos
Interações Medicamentosas , Flavonoides , Glucuronosiltransferase , Microssomos Hepáticos , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/metabolismo , Humanos , Flavonoides/farmacologia , Microssomos Hepáticos/metabolismo , Estradiol/farmacologia , Himecromona/farmacologia , Propofol/farmacologia , Inibidores Enzimáticos/farmacologiaRESUMO
Sepsis ranks among the most common health problems worldwide, characterized by organ dysfunction resulting from infection. Excessive inflammatory responses, cytokine storms, and immune-induced microthrombosis are pivotal factors influencing the progression of sepsis. Our objective was to identify novel immune-related hub genes for sepsis through bioinformatic analysis, subsequently validating their specificity and potential as diagnostic and prognostic biomarkers in an animal experiment involving a sepsis mice model. Gene expression profiles of healthy controls and patients with sepsis were obtained from the Gene Expression Omnibus (GEO) and analysis of differentially expressed genes (DEGs) was conducted. Subsequently, weighted gene co-expression network analysis (WGCNA) was used to analyze genes within crucial modules. The functional annotated DEGs which related to the immune signal pathways were used for constructing protein-protein interaction (PPI) analysis. Following this, two hub genes, FERMT3 and CD3G, were identified through correlation analyses associated with sequential organ failure assessment (SOFA) scores. These two hub genes were associated with cell adhesion, migration, thrombosis, and T-cell activation. Furthermore, immune infiltration analysis was conducted to investigate the inflammation microenvironment influenced by the hub genes. The efficacy and specificity of the two hub genes were validated through a mice sepsis model study. Concurrently, we observed a significant negative correlation between the expression of CD3G and IL-1ß and GRO/KC. These findings suggest that these two genes probably play important roles in the pathogenesis and progression of sepsis, presenting the potential to serve as more stable biomarkers for sepsis diagnosis and prognosis, deserving further study.
Assuntos
Experimentação Animal , Sepse , Animais , Humanos , Camundongos , Biomarcadores , Adesão Celular , Biologia Computacional , Modelos Animais de Doenças , Sepse/genéticaRESUMO
LR004 is a novel chimeric (human/mouse) monoclonal antibody developed for the treatment of advanced colorectal carcinoma with detectable epidermal growth factor receptor (EGFR) expression. We aimed to investigate the preclinical pharmacokinetics (PK) and in vivo biodistribution of LR004. The PK profiles of LR004 were initially established in rhesus monkeys. Subsequently, 125I radionuclide-labeled LR004 was developed and the biodistribution, autoradiography, and NanoSPECT/CT of 125I-LR004 in xenograft mice bearing A431 tumors were examined. The PK data revealed a prolonged half-life and nonlinear PK characteristics of LR004 within the dose range of 6-54 mg/kg. The radiochemical purity of 125I-LR004 was approximately 98.54%, and iodination of LR004 did not affect its specific binding activity to the EGFR antigen. In a classical biodistribution study, 125I-LR004 exhibited higher uptake in highly perfused organs than in poorly perfused organs. Prolonged retention properties of 125I-LR004 in tumors were observed at 4 and 10 days. Autoradiography and NanoSPECT/CT confirmed the sustained retention of 125I-LR004 at the tumor site in xenograft mice. These findings demonstrated the adequate tumor targeting capabilities of 125I-LR004 in EGFR-positive tumors, which may improve dosing strategies and future drug development.
Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Animais , Camundongos , Distribuição Tecidual , Anticorpos Monoclonais , Receptores ErbB/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular TumoralRESUMO
Radiation-induced skin injury (RISI) is a frequent and severe complication with a complex pathogenesis that often occurs during radiation therapy, nuclear incidents, and nuclear war, for which there is no effective treatment. Hyaluronan (HA) plays an overwhelming role in the skin, and it has been shown that UVB irradiation induces increased HA expression. Nevertheless, to the best of our knowledge, there has been no study regarding the biological correlation between RISI and HA degradation and its underlying mechanisms. Therefore, in our study, we investigated low-molecular-weight HA content using an enzyme-linked immunosorbent assay and changes in the expression of HA-related metabolic enzymes using real-time quantitative polymerase chain reaction and a Western blotting assay. The oxidative stress level of the RISI model was assessed using sodium dismutase, malondialdehyde, and reactive oxygen species assays. We demonstrated that low-molecular-weight HA content was significantly upregulated in skin tissues during the late phase of irradiation exposure in the RISI model and that HA-related metabolic enzymes, oxidative stress levels, the MEK5/ERK5 pathway, and inflammatory factors were consistent with changes in low-molecular-weight HA content. These findings prove that HA degradation is biologically relevant to RISI development and that the HA degradation mechanisms are related to HA-related metabolic enzymes, oxidative stress, and inflammatory factors. The MEK5/ERK5 pathway represents a potential mechanism of HA degradation. In conclusion, we aimed to investigate changes in HA content and preliminarily investigate the HA degradation mechanism in a RISI model under γ-ray irradiation, to consider HA as a new target for RISI and provide ideas for novel drug development.
Assuntos
Ácido Hialurônico , Pele , Ácido Hialurônico/farmacologia , Pele/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , OxirreduçãoRESUMO
Astragaloside IV (AS-IV) is one of the main active components extracted from the Chinese medicinal herb Astragali and serves as a marker for assessing the herb's quality. AS-IV is a tetracyclic triterpenoid saponin in the form of lanolin ester alcohol and exhibits various biological activities. This review article summarizes the chemical structure of AS-IV, its pharmacological effects, mechanism of action, applications, future prospects, potential weaknesses, and other unexplored biological activities, aiming at an overall analysis. Papers were retrieved from online electronic databases, such as PubMed, Web of Science, and CNKI, and data from studies conducted over the last 10 years on the pharmacological effects of AS-IV as well as its impact were collated. This review focuses on the pharmacological action of AS-IV, such as its anti-inflammatory effect, including suppressing inflammatory factors, increasing T and B lymphocyte proliferation, and inhibiting neutrophil adhesion-associated molecules; antioxidative stress, including scavenging reactive oxygen species, cellular scorching, and regulating mitochondrial gene mutations; neuroprotective effects, antifibrotic effects, and antitumor effects.
Assuntos
Astrágalo , Saponinas , Triterpenos , Saponinas/farmacologia , Triterpenos/farmacologia , Proliferação de CélulasRESUMO
In recent years, the coagulation properties of inorganic minerals such as kaolin and zeolite have been demonstrated. This study aimed to assess the hemostatic properties of three local clays from China: natural kaolin from Hainan, natural halloysite from Yunnan, and zeolite synthesized by our group. The physical and chemical properties, blood coagulation performance, and cell biocompatibility of the three materials were tested. The studied materials were characterized by using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). All three clays showed different morphologies and particle size, and exhibited negative potentials between pH 6 and 8. The TGA and DSC curves for kaolin and halloysite were highly similar. Kaolin showed the highest water absorption capacity (approximately 93.8% ± 0.8%). All three clays were noncytotoxic toward L929 mouse fibroblasts. Kaolin and halloysite showed blood coagulation effects similar to that exhibited by zeolite, indicating that kaolin and halloysite are promising alternative hemostatic materials.
Assuntos
Hemostáticos , Zeolitas , Animais , Camundongos , Argila/química , Caulim/farmacologia , Caulim/química , ChinaRESUMO
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) induces a severe cytokine storm that may cause acute lung injury/acute respiratory distress syndrome (ALI/ARDS) with high clinical morbidity and mortality in infected individuals. Cepharanthine (CEP) is a bisbenzylisoquinoline alkaloid isolated and extracted from Stephania cepharantha Hayata. It exhibits various pharmacological effects, including antioxidant, anti-inflammatory, immunomodulatory, anti-tumor, and antiviral activities. The low oral bioavailability of CEP can be attributed to its poor water solubility. In this study, we utilized the freeze-drying method to prepare dry powder inhalers (DPI) for the treatment of acute lung injury (ALI) in rats via pulmonary administration. According to the powder properties study, the aerodynamic median diameter (Da) of the DPIs was 3.2 µm, and the in vitro lung deposition rate was 30.26; thus, meeting the Chinese Pharmacopoeia standard for pulmonary inhalation administration. We established an ALI rat model by intratracheal injection of hydrochloric acid (1.2 mL/kg, pH = 1.25). At 1 h after the model's establishment, CEP dry powder inhalers (CEP DPIs) (30 mg/kg) were sprayed into the lungs of rats with ALI via the trachea. Compared with the model group, the treatment group exhibited a reduced pulmonary edema and hemorrhage, and significantly reduced content of inflammatory factors (TNF-α, IL-6 and total protein) in their lungs (p < 0.01), indicating that the main mechanism of CEP underlying the treatment of ALI is anti-inflammation. Overall, the dry powder inhaler can deliver the drug directly to the site of the disease, increasing the intrapulmonary utilization of CEP and improving its efficacy, making it a promising inhalable formulation for the treatment of ALI.
Assuntos
Lesão Pulmonar Aguda , Benzilisoquinolinas , COVID-19 , Ratos , Animais , Administração por Inalação , Inaladores de Pó Seco , COVID-19/metabolismo , SARS-CoV-2 , Aerossóis e Gotículas Respiratórios , Pulmão/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Benzilisoquinolinas/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/análise , Tamanho da Partícula , Pós/análiseRESUMO
Pulmonary fibrosis (PF) is one of the sequelae of Corona Virus Disease 2019 (COVID-19), and currently, lung transplantation is the only viable treatment option. Hence, other effective treatments are urgently required. We investigated the therapeutic effects of an approved botanical drug, cepharanthine (CEP), in a cell culture model of transforming growth factor-ß1 (TGF-ß1) and bleomycin (BLM)-induced pulmonary fibrosis rat models both in vitro and in vivo. In this study, CEP and pirfenidone (PFD) suppressed BLM-induced lung tissue inflammation, proliferation of blue collagen fibers, and damage to lung structures in vivo. Furthermore, we also found increased collagen deposition marked by α-smooth muscle actin (α-SMA) and Collagen Type I Alpha 1 (COL1A1), which was significantly alleviated by the addition of PFD and CEP. Moreover, we elucidated the underlying mechanism of CEP against PF in vitro. Various assays confirmed that CEP reduced the viability and migration and promoted apoptosis of myofibroblasts. The expression levels of myofibroblast markers, including COL1A1, vimentin, α-SMA, and Matrix Metallopeptidase 2 (MMP2), were also suppressed by CEP. Simultaneously, CEP significantly suppressed the elevated Phospho-NF-κB p65 (p-p65)/NF-κB p65 (p65) ratio, NOD-like receptor thermal protein domain associated protein 3 (NLRP3) levels, and elevated inhibitor of NF-κB Alpha (IκBα) degradation and reversed the progression of PF. Hence, our study demonstrated that CEP prevented myofibroblast activation and treated BLM-induced pulmonary fibrosis in a dose-dependent manner by regulating nuclear factor kappa-B (NF-κB)/ NLRP3 signaling, thereby suggesting that CEP has potential clinical application in pulmonary fibrosis in the future.
Assuntos
COVID-19 , Fibrose Pulmonar , Animais , Ratos , Bleomicina , Colágeno/metabolismo , COVID-19/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Pulmão , Miofibroblastos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismoRESUMO
BACKGROUND: A novel absorbable porous starch hemostat (APSH) based on calcium ion-exchange crosslinked porous starch microparticles (Ca2+CPSM) was developed to improve hemostasis during surgeries for irregular cuts. The aim of this study was to compare its hemostatic efficacy and biocompatibility in a standard rat liver injury model relatively to Arista AH, Quickclean, and crosslinked porous starch microparticles (CPSM, without calcium ion). METHODS: 72 Wistar rats (220g-240 g) were randomly assigned to six groups (Arista, Quickclean, CPSM, Ca2+CPSM, native potato starch, and untreated control group, n =12 per group). 30 mg of each hemostatic agent was applied to a standard circular liver excision (8 mm in diameter and 3 mm deep) in rats. Following their hemostatic efficacy, in vivo biocompatiblity evaluation was examined. The native potato starch (NPS) group was used as the negative group. RESULTS: Ca2+CPSM had almost the same hemostatic efficacy compared with Arista; meanwhile, all the 4 hemostatic agents had good blood compatibility. In terms of in vivo tissue compatibility, Ca2+CPSM had relatively fast degradation and absorption rate with good histocompatibility. As the morphological, anatomic observation and H&E staining of liver defects after implantation, Ca2+CPSM was almost completely absorbed by liver tissue after 14 days. CONCLUSION: According to our study, Ca2+CPSM could effectively achieve hemostasis in the standard rat liver injury model and exhibited good blood compatibility and in vivo tissue compatibility. These finding suggested that Ca2+CPSM as a new kind of APSH had its extensive clinical application value.
Assuntos
Hemostáticos , Animais , Cálcio/farmacologia , Hemostasia , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Porosidade , Ratos , Ratos Wistar , Amido/farmacologia , Amido/uso terapêuticoRESUMO
The mole fraction of deacetylated monomeric units in chitosan (CS) molecules is referred to as CS's degree of deacetylation (DD). In this study, 35 characteristic ions of CS were detected using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS). The relative response intensity of 35 characteristic ion pairs using a single charge in nine CS samples with varying DDs was analyzed using 30 analytical methods. There was a good linear relationship between the relative response intensity of the characteristic ion pairs determined using ultrahigh performance (UP) LC-MS/MS and the DD of CS. The UPLC-MS/MS method for determining the DD of CS was unaffected by the sample concentration. The detection instrument has a wide range of application parameters with different voltages, high temperatures, and gas flow conditions. This study established a detection method for the DD of CS with high sensitivity, fast analysis, accuracy, stability, and durability.
Assuntos
Quitosana , Espectrometria de Massas em Tandem , Quitosana/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodosRESUMO
Cepharanthine is an active ingredient separated and extracted from Stephania cepharantha Hayata, a Menispermaceae plant. As a bisbenzylisoquinoline alkaloid, cepharanthine has various pharmacological properties, including antioxidant, anti-inflammatory, immunomodulatory, antitumoral, and antiviral effects. Following the emergence of coronavirus disease 2019 (COVID-19), cepharanthine has been found to have excellent anti-COVID-19 activity. In this review, the important physicochemical properties and pharmacological effects of cepharanthine, particularly the antiviral effect, are systematically described. Additionally, the molecular mechanisms and novel dosage formulations for the efficient, safe, and convenient delivery of cepharanthine are summarized.
Assuntos
Alcaloides , Benzilisoquinolinas , COVID-19 , Humanos , Benzilisoquinolinas/farmacologia , Alcaloides/química , Antivirais/farmacologiaRESUMO
Cepharanthine (CEP) has excellent anti-SARS-CoV-2 properties, indicating its favorable potential for COVID-19 treatment. However, its application is challenged by its poor dissolubility and oral bioavailability. The present study aimed to improve the bioavailability of CEP by optimizing its solubility and through a pulmonary delivery method, which improved its bioavailability by five times when compared to that through the oral delivery method (68.07% vs. 13.15%). An ultra-performance liquid chromatography tandem-mass spectrometry (UPLC-MS/MS) method for quantification of CEP in rat plasma was developed and validated to support the bioavailability and pharmacokinetic studies. In addition, pulmonary fibrosis was recognized as a sequela of COVID-19 infection, warranting further evaluation of the therapeutic potential of CEP on a rat lung fibrosis model. The antifibrotic effect was assessed by analysis of lung index and histopathological examination, detection of transforming growth factor (TGF)-ß1, interleukin-6 (IL-6), α-smooth muscle actin (α-SMA), and hydroxyproline level in serum or lung tissues. Our data demonstrated that CEP could significantly alleviate bleomycin (BLM)-induced collagen accumulation and inflammation, thereby exerting protective effects against pulmonary fibrosis. Our results provide evidence supporting the hypothesis that pulmonary delivery CEP may be a promising therapy for pulmonary fibrosis associated with COVID-19 infection.
Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Fibrose Pulmonar , Animais , Benzilisoquinolinas , Disponibilidade Biológica , Bleomicina/farmacologia , COVID-19/complicações , Cromatografia Líquida , Humanos , Pulmão , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/etiologia , Ratos , Espectrometria de Massas em Tandem , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Uncontrolled hemorrhage from trauma or surgery can lead to death. In this study, chitosan/kaolin (CSK) and chitosan/montmorillonite (CSMMT) composites were prepared from chitosan (CS), kaolin (K), and montmorillonite (MMT) as raw materials to control bleeding. The physiochemical properties and surface morphology of CSK and CSMMT composites were analyzed by Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), zeta potentials, and X-ray fluorescence (XRF). The hemostatic mechanism was measured in vitro by activated partial thromboplastin time (APTT), prothrombin time (PT), in vitro clotting time, erythrocyte aggregation, and thromboelastogram (TEG). The hemostasis ability was further verified by using tail amputation and arteriovenous injury models in rats. The biocompatibility of CSK and CSMMT was evaluated by in vitro hemolysis, cytotoxicity assays, as well as acute toxicity test and skin irritation tests. The results show that CSK and CSMMT are promising composite materials with excellent biocompatibility and hemostatic properties that can effectively control bleeding.
Assuntos
Quitosana , Hemostáticos , Animais , Bentonita/química , Bentonita/farmacologia , Quitosana/química , Quitosana/farmacologia , Argila , Hemorragia/tratamento farmacológico , Hemostáticos/química , Hemostáticos/farmacologia , Caulim/farmacologia , Ratos , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Acute liver injury shares a common feature of hepatocytes death, immune system disorders, and cellular stress. Hepassocin (HPS) is a hepatokine that has ability to promote hepatocytes proliferation and to protect rats from D-galactose (D-Gal)- or carbon tetrachloride (CCl4)-induced liver injury by stimulating hepatocytes proliferation and preventing the high mortality rate, hepatocyte death, and hepatic inflammation. In this paper, we generated a pharmaceutical-grade recombinant human HPS using mammalian cells expression system and evaluated the effects of HPS administration on the pathogenesis of acute liver injury in monkey and mice. In the model mice of D-galactosamine (D-GalN) plus lipopolysaccharide (LPS)-induced liver injury, HPS treatment significantly reduced hepatocyte death and inflammation response, and consequently attenuated the development of acute liver failure. In the model monkey of D-GalN-induced liver injury, HPS administration promoted hepatocytes proliferation, prevented hepatocyte apoptosis and oxidation stress, and resulted in amelioration of liver injury. Furthermore, the primary pharmacokinetic study showed natural HPS possesses favorable pharmacokinetics; the acute toxicity study indicated no significant changes in behavioral, clinical, or histopathological parameters of HPS-treated mice, implying the clinical potential of HPS. Our results suggest that exogenous HPS has protective effects on acute liver injury in both mice and monkeys. HPS or HPS analogues and mimetics may provide novel drugs for the treatment of acute liver injury.
Assuntos
Fibrinogênio/uso terapêutico , Falência Hepática Aguda/prevenção & controle , Animais , Células CHO , Cricetulus , Citocinas/sangue , Avaliação Pré-Clínica de Medicamentos , Fibrinogênio/biossíntese , Fibrinogênio/farmacocinética , Fibrinogênio/toxicidade , Galactosamina , Humanos , Lipopolissacarídeos , Macaca fascicularis , Masculino , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Distribuição Aleatória , Ratos Sprague-Dawley , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/toxicidade , Testes de Toxicidade AgudaRESUMO
Icaritin (ICT), a prenylflavonoid derivative extracted from the Epimedium genus, has exhibited antitumor effects in hepatocellular carcinoma (HCC) cells and safety and tolerance in clinical settings. However, ICT exhibits low blood concentration and the in vivo dominant plasma species of ICT is glucuronides [icaritin-3-glucuronide (G1), icaritin-7-glucuronide (G2) and icaritin-3, 7-diglucuronide (DIG)]. Therefore, how ICT reaches the liver and exerts its effect with low toxicity remains unknown. Therefore, pharmacokinetic experiments (p.o. 5 mg/kg with/out 50 mg/kg inhibitor combo), intestinal perfusion (2 µM ICT), portal vein infusion (1.6 µM ICT, 7.1 µM G1, 6.8 µM G2 and 4.4 µM DIG), and in vitro studies (the concentration range of substrates: 0.3-10 µM) were conducted in the present study. Ultimately, ICT was shown to undergo glucuronidation by the intestine and subsequent uptake by hepatocytes via organic anion transporting peptides (OATPs) as conjugates, followed by biliary excretion mainly as diglucuronide. In conclusion, we found for the first time that the intestine is considered as the major metabolic organ, liver as the main recycling organ for the enterohepatic recycling (EHR) of ICT. Moreover, DIG is the main species in the systemic circulation following oral administration of ICT which explains the low toxicity of ICT in clinical settings.
Assuntos
Flavonoides/metabolismo , Flavonoides/farmacocinética , Glucuronídeos/metabolismo , Glucuronídeos/farmacocinética , Animais , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Circulação Êntero-Hepática , Células HEK293 , Eliminação Hepatobiliar , Hepatócitos/metabolismo , Humanos , Intestinos , Fígado/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Perfusão/métodos , Veia Porta/metabolismo , Ratos , Ratos Wistar , Espectrometria de Massas em TandemRESUMO
A rapid and sensitive method was established for arsenic (As) speciation based on high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). This method was validated for the quantification of four arsenic species, including arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV) in cynomolgus macaque plasma. Separation was achieved in just 3.7 min with an alkyl reverse phase column and highly aqueous mobile phase containing 20 mM citric acid and 5 mM sodium hexanesulfonate (pH = 4.3). The calibration curves were linear over the range of 5â»500 ng·mL-1 (measured as As), with r > 0.99. The above method was validated for selectivity, precision, accuracy, matrix effect, recovery, carryover effect and stability, and applied in a comparative pharmacokinetic study of arsenic species in cynomolgus macaque samples following intravenous and intragastrical administration of arsenic trioxide solution (0.80 mg·kg-1; 0.61 mg·kg-1 of arsenic); in addition, the absolute oral bioavailability of the active ingredient AsIII of arsenic trioxide in cynomolgus macaque samples was derived as 60.9 ± 16.1%.
Assuntos
Trióxido de Arsênio/administração & dosagem , Trióxido de Arsênio/farmacocinética , Arsênio/análise , Macaca fascicularis/sangue , Administração Intravenosa , Animais , Arseniatos/análise , Arseniatos/sangue , Arsênio/sangue , Arsenicais/análise , Arsenicais/sangue , Arsenitos/análise , Arsenitos/sangue , Disponibilidade Biológica , Ácido Cacodílico/análise , Ácido Cacodílico/sangue , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas/métodosRESUMO
The physicochemical properties and potential hemostatic application of Wenchang kaolin and Maoming kaolin were inspected and evaluated. Chemical composition analysis, Fourier transform infrared (FTIR) spectroscopy, surface area determination, X-ray diffraction, particle size, scanning electron microscopy (SEM) observations, and zeta potential analysis were performed to quantify the physical and chemical properties of the two kaolins. The results showed that both kaolins have typical FTIR bands of kaolinite with a weight fraction for kaolinite over 90 wt%. Larger conglobate aggregates of Maoming kaolin demonstrated wider particle size distributions with two peaks at 3.17 and 35.57 µm, while the book-like Wenchang kaolin had narrow particle size distribution, with a frequent size of 5.64 µm. Furthermore, thrombelastography, the whole blood clotting tests (WBCT), plasma recalcification time (PRT) measurement, and MTT assay were performed to measure the clotting activities and biocompatibility of the two kaolins. The results showed that both kaolins could promote blood coagulation with good cytocompatibility, while Wenchang kaolin had a better procoagulant activity than Maoming kaolin. These findings demonstrated Wenchang kaolin to be a more suitable local source material for application as a hemostatic agent.
Assuntos
Hemostáticos/farmacologia , Caulim/farmacologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Testes de Coagulação Sanguínea , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , China , Cães , Concentração de Íons de Hidrogênio , Caulim/química , Camundongos , Tamanho da Partícula , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Tromboelastografia , Difração de Raios XRESUMO
MBRI-001 was demonstrated preliminary better pharmacokinetics and antitumor effects than that of plinabulin in vivo. In this approach, we further carried out systematic pharmacokinetic and pharmacodynamic study of MBRI-001 in vitro and in vivo. MBRI-001 was tested stable in rat plasma and more stable in liver microsomes than plinabulin in vitro. In vivo, MBRI-001 could be distributed rapidly and widely in various tissues, especially the concentration of MBRI-001 in lung was remarkably higher than other tissues. Excretion study indicated that MBRI-001 might been decomposed and excreted as metabolites. Additionally, the combination treatment of MBRI-001 and gefitinib revealed better antitumor inhibition rate than monotherapy in vivo. Therefore, we suggest that MBRI-001 could be developed as a promising anti-cancer agent in near future.
Assuntos
Antineoplásicos/química , Dicetopiperazinas/química , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Deutério/química , Dicetopiperazinas/metabolismo , Dicetopiperazinas/farmacocinética , Dicetopiperazinas/uso terapêutico , Feminino , Meia-Vida , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ligação Proteica , Ratos , Ratos Wistar , Distribuição TecidualRESUMO
Red blood cells (RBCs) are routinely stored for 35 to 42 days in most countries. During storage, RBCs undergo biochemical and biophysical changes known as RBC storage lesion, which is influenced by alternative storage additive solutions (ASs). Metabolomic studies have been completed on RBCs stored in a number of ASs, including SAGM, AS-1, AS-3, AS-5, AS-7, PAGGGM, and MAP. However, the reported metabolome analysis of laboratory-made MAP-stored RBCs was mainly focused on the time-dependent alterations in glycolytic intermediates during storage. In this study, we investigated the time-course of alterations in various small molecule metabolites in RBCs stored in commercially used MAP for 49 days using ultra-high performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-QTOF-MS). These alterations indicated that RBC storage lesion is related to multiple pathways including glycolysis, pentose phosphate pathway, glutathione homeostasis, and purine metabolism. Thus, our findings might be useful for understanding the complexity of metabolic mechanisms of RBCs in vitro aging and encourage the deployment of systems biology methods to blood products in transfusion medicine.
Assuntos
Eritrócitos/metabolismo , Metaboloma , Preservação de Sangue , Glutationa/metabolismo , Glicólise , Humanos , Redes e Vias Metabólicas , Estresse Oxidativo , Purinas/metabolismoRESUMO
AIM: SCT800 is a new third-generation recombinant FVIII agent that is undergoing promising preclinical study. This study aimed to investigate the pharmacokinetic and pharmacodynamic profiles of SCT800 in hemophilia A mice. METHODS: After hemophilia A mice were intravenously injected with single dose of SCT800 (80, 180, and 280 IU/kg) or the commercially available product Xyntha (280 IU/kg), pharmacokinetics profiles were evaluated based on measuring plasma FVIII: C. For pharmacodynamics study, dose-response curves of SCT800 and Xyntha (1-200 IU/kg) were constructed using a tail bleeding model monitoring both bleeding time and blood loss. RESULTS: Pharmacokinetics profile analysis showed a dose independency of SCT800 ranging from 80 to 280 IU/kg and comparable pharmacokinetic profiles between SCT800 and Xyntha at the doses tested. Pharmacodynamics study revealed comparable ED50 values of SCT800 and Xyntha in the tail bleeding model: 14.78 and 15.81 IU/kg for bleeding time, respectively; 13.50 and 13.58 IU/kg for blood loss, respectively. Moreover, at the doses tested, the accompanying dose-related safety evaluation in the tail bleeding model showed lower hypercoagulable tendency and wider dosage range potential for SCT800 than Xyntha. CONCLUSION: In hemophilia A mice, SCT800 shows comparable pharmacokinetics and pharmacodynamics to Xyntha at the doses tested, and possibly with better safety properties.