Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(7): 5907-5913, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38318861

RESUMO

Effective manipulation of magnetic properties in transition-metal oxides is one of the crucial issues for the application of materials. Up to now, most investigations have focused on electrolyte-based ionic control, which is limited by the slow speed. In this work, the interfacial coupling of the SrCoO2.5/La0.7Ca0.3MnO3 (LCMO) bilayer is effectively modulated with fast response time. After being treated with diluted acetic acid, the bilayer changes from antiferromagnetic/ferromagnetic (AFM/FM) coupling to FM/FM coupling and the Curie temperature is also effectively increased. Meanwhile, the corresponding electric transport properties are modulated within a very short time. Combined with the structure characterization and X-ray absorption measurements, we find that the top SrCoO2.5 layer is changed from the antiferromagnetic insulator to the ferromagnetic metal phase, which is attributed to the formation of the active oxygen species due to the reaction between the protons in the acid and the SrCoO2.5 layer. The bottom LCMO layer remains unchanged during this process. The response time of the bilayer with the acid treatment method is more than an order of magnitude faster than other methods. It is expected that this acid treatment method may open more possibilities for manipulating the magnetic and electric properties in oxide-based devices.

2.
RSC Adv ; 13(15): 10254-10260, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006349

RESUMO

The interface of perovskite heterostructures has been shown to exhibit various electronic and magnetic phases such as two-dimensional electron gas, magnetism, superconductivity, and electronic phase separation. These rich phases are expected due to the strong interplay between spin, charge, and orbital degree of freedom at the interface. In this work, the polar and nonpolar interfaces are designed in LaMnO3-based (LMO) superlattices to investigate the difference in magnetic and transport properties. For the polar interface in a LMO/SrMnO3 superlattice, a novel robust ferromagnetism, exchange bias effect, vertical magnetization shift, and metallic behaviors coexist due to the polar catastrophe, which results in a double exchange coupling effect in the interface. For the nonpolar interface in a LMO/LaNiO3 superlattice, only the ferromagnetism and exchange bias effect characteristics exist due to the polar continuous interface. This is attributed to the charge transfer between Mn3+ and Ni3+ ions at the interface. Therefore, transition metal oxides exhibit various novel physical properties due to the strong correlation of d electrons and the polar and nonpolar interfaces. Our observations may provide an approach to further tune the properties using the selected polar and nonpolar oxide interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA