Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecology ; 99(10): 2207-2216, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30039848

RESUMO

The stress-gradient hypothesis predicts a switch from competition to facilitation, under increasing environmental stress. However, it is unclear how important is the change in competition-facilitation balance (i.e., the net outcome of plant-plant interactions) along the stress gradient in the regulation of community temporal stability (i.e., the inverse of temporal variability in total biomass). Increasing environmental stress may enhance community temporal stability by reduced competition or eventually by leading to facilitative interactions between the dominant and subordinate species. Here, we present the results of a 5-yr mesocosm experiment that demonstrates the effects of interspecific interactions on the temporal stability of a riparian community across different drought-stress scenarios. We constructed artificial communities of dominant species (Carex elata) and three subordinate species to simulate the independent effects of environmental stress and interspecific interactions. Using removal of the dominant species, we evaluated the interplay of various mechanisms regulating the temporal stability of the subordinate species (competition-facilitation balance, species asynchrony, and dominant species stability). By simultaneous testing of these stabilizing mechanisms, we show their importance differs depending on environmental variability and harshness. The predominant role is taken by species asynchrony in a seasonally dry environment, whereas in a permanently dry environment, the importance of reduced competition increases. Reduced competition was stabilizing, in particular through increased total community biomass, whereas species asynchrony increased total community biomass and decreased biomass variation. These results suggest experiments and simulations that exclude interspecific interactions may not offer realistic predictions of the effects of changing hydrological regimes on ecosystem functioning.


Assuntos
Ecossistema , Estresse Fisiológico , Biomassa
2.
Sci Total Environ ; 854: 158743, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108840

RESUMO

Floodplain forests offer a diversity of habitats and resources for a very wide range of plant and animal species. They also offer many benefits to humankind and are considered essential to the mitigation of the effects of climate change. Nevertheless, throughout the world they are suffering the most intense of anthropogenic pressures so are, of all ecosystems, among the most endangered. Here, we bring together and synthesise existing ecological understanding of the mechanisms underlying the high heterogeneity and diversity of temperate floodplain forests and of the pressures threatening their high biological value due to habitat homogenisation. Floodplain forests depend on the periodic disturbances under which they evolved, including fluvial dynamics, traditional management practices and the activities of herbivores. However, they have been heavily degraded by climate change, invasion of exotic species, river-flow regulation, landscape fragmentation, eutrophication and the cessation of traditional management. We can now observe two general trends in temperate floodplain forests: (1) Due to intensive landscape exploitation, they are now more open and thus prone to the spread of competitive species, including of invasive exotics and (2) Due to the cessation of traditional management, along with modified hydrological conditions, they are composed of species in the later successional stages (i.e., more shade-tolerant and mesic) while light-demanding species are quickly vanishing. Restoration practices have brought about contrasting results when restoration of floodplains to their natural states has been problematic. This is likely because of interplay between various natural and artificial processes not previously taken into proper consideration. We would like to draw attention to the fact that restoration projects or the preservation of existing floodplain forest ecosystems should combine the restoration of watercourses with the mitigation of other important threats acting at different scales of the landscape (spread of invasive species, eutrophication of watersheds and inappropriate forest management).


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Florestas , Biodiversidade , Árvores
3.
PLoS One ; 12(4): e0176455, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28445514

RESUMO

Heterocarpy enables species to effectively spread under unfavourable conditions by producing two or more types of fruit differing in ecological characteristics. Although it is frequent in annuals occupying disturbed habitats that are vulnerable to invasion, there is still a lack of congeneric studies addressing the importance of heterocarpy for species invasion success. We compared two pairs of heterocarpic Atriplex species, each of them comprising one invasive and one non-invasive non-native congener. In two common garden experiments, we (i) simulated the influence of different levels of nutrients and population density on plants grown from different types of fruits and examined several traits that are generally positively associated with invasion success, and (ii) grew plants in a replacement series experiment to evaluate resource partitioning between them and to compare their competitive ability. We found that specific functional traits or competitiveness of species cannot explain the invasiveness of Atriplex species, indicating that species invasiveness involves more complex interactions of traits that are important only in certain ecological contexts, i.e. in specific environmental conditions and only some habitats. Interestingly, species trait differences related to invasion success were found between plants growing from the ecologically most contrasting fruit types. We suggest that fruit types differing in ecological behaviour may be essential in the process of invasion or in the general spreading of heterocarpic species, as they either the maximize population growth (type C fruit) or enhance the chance of survival of new populations (type A fruit). Congeners offer the best available methodical framework for comparing traits among phylogenetically closely related invasive and non-invasive species. However, as indicated by our results, this approach is unlikely to reveal invasive traits because of the complexity underlying invasiveness.


Assuntos
Atriplex/crescimento & desenvolvimento , Espécies Introduzidas , Ecossistema , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Germinação
4.
PLoS One ; 9(2): e88709, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586374

RESUMO

BACKGROUND/AIMS: Recently, new palaeoecological records supported by molecular analyses and palaeodistributional modelling have provided more comprehensive insights into plant behaviour during the last Quaternary cycle. We reviewed the migration history of species of subgenus Alnus during the last 50,000 years in Europe with a focus on (1) a general revision of Alnus history since the Last Glacial Maximum (LGM), (2) evidence of northern refugia of Alnus populations during the LGM and (3) the specific history of Alnus in particular European regions. METHODOLOGY: We determined changes in Alnus distribution on the basis of 811 and 68 radiocarbon-dated pollen and macrofossil sites, respectively. We compiled data from the European Pollen Database, the Czech Quaternary Palynological Database, the Eurasian Macrofossil Database and additional literature. Pollen percentage thresholds indicating expansions or retreats were used to describe patterns of past Alnus occurrence. PRINCIPAL FINDINGS: An expansion of Alnus during the Late Glacial and early Holocene periods supports the presence of alders during the LGM in southern peninsulas and northerly areas in western Europe, the foothills of the Alps, the Carpathians and northeastern Europe. After glaciers withdrew, the ice-free area of Europe was likely colonized from several regional refugia; the deglaciated area of Scandinavia was likely colonized from a single refugium in northeastern Europe. In the more northerly parts of Europe, we found a scale-dependent pattern of Alnus expansion characterised by a synchronous increase of Alnus within individual regions, though with regional differences in the times of the expansion. In southern peninsulas, the Alps and the Carpathians, by contrast, it seems that Alnus expanded differently at individual sites rather than synchronously in whole regions. CONCLUSIONS: Our synthesis supports the idea that northern LGM populations were important sources of postglacial Alnus expansion. The delayed Alnus expansion apparent in some regions was likely a result of environmental limitations.


Assuntos
Alnus/fisiologia , Demografia , Paleontologia/métodos , Radioisótopos de Carbono/análise , Europa (Continente) , Geografia , Pólen/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA