Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Lasers Surg Med ; 54(3): 418-425, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34940986

RESUMO

OBJECTIVES: Bacteremia is a serious and potentially lethal condition. Staphylococcus aureus is a leading cause of bacteremia and methicillin-resistant S. aureus (MRSA) accounts for more than a third of the cases. Compared to methicillin-sensitive S. aureus, MRSA is more than twice as likely to be fatal. Furthermore, subpopulations of seemingly isogenic bacteria may exhibit a range of susceptibilities, often called heterogenous resistance. These heterogeneous antibiotic-resistant infections are often misdiagnosed as hospital-acquired secondary infections because there are no clinically used tests that can differentiate between homogeneous and heterogeneous antibiotic resistance. We describe the development and proof of concept of rapid bacterial identification using photoacoustic flow cytometry and labeled bacteriophages with the characterization and differentiation of heterogeneous antibiotic-resistant bacterial infections. METHODS: In photoacoustic flow cytometry, pulsed laser light is delivered to a sample flowing past a focused transducer and particles that absorb laser light create an acoustic response. Optically labeled bacteriophage are added to a bacterial mixture that flows through the photoacoustic chamber. The presence of target bacteria is determined by bound labeled phage which are detected photoacoustically. Incubation of bacterial samples in the presence and absence of the antibiotic daptomycin creates a difference in bacterial cell numbers that is quantified using photoacoustic flow cytometry. RESULTS: Four clinical isolates were tested in the presence and absence of daptomycin. Photoacoustic events for each isolate were recorded and compared to growth curves. Samples treated with daptomycin fell into three categories: resistant, susceptible, and heterogeneous resistant. CONCLUSIONS: Here we show a method to determine the presence of bacteria as a marker for bloodstream infection level and antibiotic sensitivity in less than 4 hours. Additionally, these results show an ability to identify heterogeneous resistant strains that are often misidentified.


Assuntos
Bacteriemia , Infecção Hospitalar , Daptomicina , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Daptomicina/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
2.
Mamm Genome ; 29(7-8): 367-383, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30043100

RESUMO

The emergence of highly pathogenic human coronaviruses (hCoVs) in the last two decades has illuminated their potential to cause high morbidity and mortality in human populations and disrupt global economies. Global pandemic concerns stem from their high mortality rates, capacity for human-to-human spread by respiratory transmission, and complete lack of approved therapeutic countermeasures. Limiting disease may require the development of virus-directed and host-directed therapeutic strategies due to the acute etiology of hCoV infections. Therefore, understanding how hCoV-host interactions cause pathogenic outcomes relies upon mammalian models that closely recapitulate the pathogenesis of hCoVs in humans. Pragmatism has largely been the driving force underpinning mice as highly effective mammalian models for elucidating hCoV-host interactions that govern pathogenesis. Notably, tractable mouse genetics combined with hCoV reverse genetic systems has afforded the concomitant manipulation of virus and host genetics to evaluate virus-host interaction networks in disease. In addition to assessing etiologies of known hCoVs, mouse models have clinically predictive value as tools to appraise potential disease phenotypes associated with pre-emergent CoVs. Knowledge of CoV pathogenic potential before it crosses the species barrier into the human population provides a highly desirable preclinical platform for addressing global pathogen preparedness, an overarching directive of the World Health Organization. Although we recognize that results obtained in robust mouse models require evaluation in non-human primates, we focus this review on the current state of hCoV mouse models, their use as tractable complex genetic organisms for untangling complex hCoV-host interactions, and as pathogenesis models for preclinical evaluation of novel therapeutic interventions.


Assuntos
Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/virologia , Coronavirus/fisiologia , Interações Hospedeiro-Patógeno , Animais , Doenças Transmissíveis Emergentes/tratamento farmacológico , Doenças Transmissíveis Emergentes/genética , Doenças Transmissíveis Emergentes/imunologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos
3.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915601

RESUMO

Integration of neural interfaces with minimal tissue disruption in the brain is ideal to develop robust tools that can address essential neuroscience questions and combat neurological disorders. However, implantation of intracortical devices provokes severe tissue inflammation within the brain, which requires a high metabolic demand to support a complex series of cellular events mediating tissue degeneration and wound healing. Pericytes, peri-vascular cells involved in blood-brain barrier maintenance, vascular permeability, waste clearance, and angiogenesis, have recently been implicated as potential perpetuators of neurodegeneration in brain injury and disease. While the intimate relationship between pericytes and the cortical microvasculature have been explored in other disease states, their behavior following microelectrode implantation, which is responsible for direct blood vessel disruption and dysfunction, is currently unknown. Using two-photon microscopy we observed dynamic changes in the structure and function of pericytes during implantation of a microelectrode array over a 4-week implantation period. Pericytes respond to electrode insertion through transient increases in intracellular calcium and underlying constriction of capillary vessels. Within days following the initial insertion, we observed an influx of new, proliferating pericytes which contribute to new blood vessel formation. Additionally, we discovered a potentially novel population of reactive immune cells in close proximity to the electrode-tissue interface actively engaging in encapsulation of the microelectrode array. Finally, we determined that intracellular pericyte calcium can be modulated by intracortical microstimulation in an amplitude- and frequency-dependent manner. This study provides a new perspective on the complex biological sequelae occurring the electrode-tissue interface and will foster new avenues of potential research consideration and lead to development of more advanced therapeutic interventions towards improving the biocompatibility of neural electrode technology.

4.
J Neural Eng ; 20(4)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37531953

RESUMO

Objective. Electrical stimulation has had a profound impact on our current understanding of nervous system physiology and provided viable clinical options for addressing neurological dysfunction within the brain. Unfortunately, the brain's immune suppression of indwelling microelectrodes currently presents a major roadblock in the long-term application of neural recording and stimulating devices. In some ways, brain trauma induced by penetrating microelectrodes produces similar neuropathology as debilitating brain diseases, such as Alzheimer's disease (AD), while also suffering from end-stage neuron loss and tissue degeneration. The goal of the present study was to understand whether there may be any parallel mechanisms at play between brain injury from chronic microelectrode implantation and those of neurodegenerative disorder.Approach. We used two-photon microscopy to visualize the accumulation, if any, of age- and disease-associated factors around chronically implanted electrodes in both young and aged mouse models of AD.Main results. We determined that electrode injury leads to aberrant accumulation of lipofuscin, an age-related pigment, in wild-type and AD mice alike. Furthermore, we reveal that chronic microelectrode implantation reduces the growth of pre-existing Alzheimer's plaques while simultaneously elevating amyloid burden at the electrode-tissue interface. Lastly, we uncover novel spatial and temporal patterns of glial reactivity, axonal and myelin pathology, and neurodegeneration related to neurodegenerative disease around chronically implanted microelectrodes.Significance. This study offers multiple novel perspectives on the possible neurodegenerative mechanisms afflicting chronic brain implants, spurring new potential avenues of neuroscience investigation and design of more targeted therapies for improving neural device biocompatibility and treatment of degenerative brain disease.


Assuntos
Doença de Alzheimer , Lesões Encefálicas , Doenças Neurodegenerativas , Camundongos , Animais , Doenças Neurodegenerativas/patologia , Encéfalo/patologia , Modelos Animais de Doenças , Lesões Encefálicas/patologia , Eletrodos Implantados , Microeletrodos
5.
bioRxiv ; 2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36891286

RESUMO

Electrical stimulation has had a profound impact on our current understanding of nervous system physiology and provided viable clinical options for addressing neurological dysfunction within the brain. Unfortunately, the brain's immune suppression of indwelling microelectrodes currently presents a major roadblock in the long-term application of neural recording and stimulating devices. In some ways, brain trauma induced by penetrating microelectrodes produces similar neuropathology as debilitating brain diseases, such as Alzheimer's disease (AD), while also suffering from end-stage neuron loss and tissue degeneration. To understand whether there may be any parallel mechanisms at play between brain injury from chronic microelectrode implantation and those of neurodegenerative disorder, we used two-photon microscopy to visualize the accumulation, if any, of age- and disease-associated factors around chronically implanted electrodes in both young and aged mouse models of AD. With this approach, we determined that electrode injury leads to aberrant accumulation of lipofuscin, an age-related pigment, in wild-type and AD mice alike. Furthermore, we reveal that chronic microelectrode implantation reduces the growth of pre-existing amyloid plaques while simultaneously elevating amyloid burden at the electrode-tissue interface. Lastly, we uncover novel spatial and temporal patterns of glial reactivity, axonal and myelin pathology, and neurodegeneration related to neurodegenerative disease around chronically implanted microelectrodes. This study offers multiple novel perspectives on the possible neurodegenerative mechanisms afflicting chronic brain implants, spurring new potential avenues of neuroscience investigation and design of more targeted therapies for improving neural device biocompatibility and treatment of degenerative brain disease.

6.
Methods Mol Biol ; 2265: 203-212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704716

RESUMO

Early detection of cancer has been a goal of cancer research in general and melanoma research in particular (Birnbaum et al., Lancet Glob Health 6:e885-e893, 2018; Alendar et al., Bosnian J Basic Med Sci 9:77-80, 2009). Early detection of metastasis has been targeted as pivotal to increasing survival rates (Menezes et al., Adv Cancer Res 132:1-44, 2016). Melanoma, though curable in its early stages, has a dramatic decrease in survival rates once metastasis has occurred (Sharma et al., Biotechnol Adv 36:1063-1078, 2018). The transition to metastasis is not well understood and is an area of increasing interest. Metastasis is always premeditated by the shedding of circulating tumor cells (CTCs) from the primary tumor. The ability to isolate rare CTCs from the bloodstream has led to a host of new targets and therapies for cancer (Micalizzi et al., Genes Dev 31:1827-1840, 2017). Detection of CTCs also allows for disease progression to be tracked in real time while eliminating the need to wait for additional tumors to grow. Using a photoacoustic flowmeter, in which we induce ultrasonic responses from circulating melanoma cells (CMCs), we identify and quantify these cells in order to track disease progression. Additionally, these CMCs are captured and isolated allowing for future analysis such as RNA-Seq or microarray analysis.


Assuntos
Citometria de Fluxo/métodos , Melanoma/diagnóstico , Células Neoplásicas Circulantes , Técnicas Fotoacústicas/instrumentação , Técnicas Fotoacústicas/métodos , Reologia/instrumentação , Reologia/métodos , Neoplasias Cutâneas/diagnóstico , Progressão da Doença , Detecção Precoce de Câncer/métodos , Citometria de Fluxo/instrumentação , Biblioteca Gênica , Humanos , Imuno-Histoquímica/métodos , Melanoma/sangue , Melanoma/genética , Melanoma/patologia , Metástase Neoplásica/diagnóstico , Metástase Neoplásica/patologia , Células Neoplásicas Circulantes/patologia , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Ultrassonografia/métodos
7.
Virology ; 517: 98-107, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29277291

RESUMO

We recently established a mouse model (288-330+/+) that developed acute respiratory disease resembling human pathology following infection with a high dose (5 × 106 PFU) of mouse-adapted MERS-CoV (icMERSma1). Although this high dose conferred fatal respiratory disease in mice, achieving similar pathology at lower viral doses may more closely reflect naturally acquired infections. Through continued adaptive evolution of icMERSma1 we generated a novel mouse-adapted MERS-CoV (maM35c4) capable of achieving severe respiratory disease at doses between 103 and 105 PFU. Novel mutations were identified in the maM35c4 genome that may be responsible for eliciting etiologies of acute respiratory distress syndrome at 10-1000 fold lower viral doses. Importantly, comparative genetics of the two mouse-adapted MERS strains allowed us to identify specific mutations that remained fixed through an additional 20 cycles of adaptive evolution. Our data indicate that the extent of MERS-CoV adaptation determines the minimal infectious dose required to achieve severe respiratory disease.


Assuntos
Evolução Biológica , Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Animais , Infecções por Coronavirus/patologia , Pulmão/virologia , Camundongos , Organismos Geneticamente Modificados
8.
Sci Rep ; 8(1): 10727, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013082

RESUMO

The recurrence of new human cases of Middle East respiratory syndrome coronavirus (MERS-CoV) underscores the need for effective therapeutic countermeasures. Nonhuman primate models are considered the gold standard for preclinical evaluation of therapeutic countermeasures. However, MERS-CoV-induced severe respiratory disease in humans is associated with high viral loads in the lower respiratory tract, which may be difficult to achieve in nonhuman primate models. Considering this limitation, we wanted to ascertain the effectiveness of using a MERS-CoV infectious clone (icMERS-0) previously shown to replicate to higher titers than the wild-type EMC 2012 strain. We observed respiratory disease resulting from exposure to the icMERS-0 strain as measured by CT in rhesus monkeys with concomitant detection of virus antigen by immunohistochemistry. Overall, respiratory disease was mild and transient, resolving by day 30 post-infection. Although pulmonary disease was mild, these results demonstrate for the first time the utility of CT imaging to measure disease elicited by a MERS-CoV infectious clone system in nonhuman primate models.


Assuntos
Infecções por Coronavirus/diagnóstico , Pulmão/diagnóstico por imagem , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Animais , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Humanos , Processamento de Imagem Assistida por Computador , Pulmão/patologia , Pulmão/virologia , Macaca mulatta , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , RNA Viral/isolamento & purificação , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Carga Viral/genética , Replicação Viral/genética
9.
mBio ; 8(4)2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830941

RESUMO

While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation. In vitro replication attenuation also extends to in vivo models, allowing use of dORF3-5 as a live attenuated vaccine platform. Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward.IMPORTANCE The initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Fases de Leitura Aberta , Replicação Viral/genética , Animais , Linhagem Celular , Células Cultivadas , Infecções por Coronavirus/virologia , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Humanos , Inflamação , Interferons/genética , Interferons/metabolismo , Camundongos , Mutação , NF-kappa B/metabolismo , Genética Reversa , Transdução de Sinais
10.
Nat Microbiol ; 2: 16226, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892925

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%. Limited clinical studies indicate that humans infected with MERS-CoV exhibit pathology consistent with the late stages of ARDS, which is reminiscent of the disease observed in patients infected with severe acute respiratory syndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR-Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV-induced ARDS.


Assuntos
Infecções por Coronavirus/complicações , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Modelos Animais de Doenças , Coronavírus da Síndrome Respiratória do Oriente Médio/crescimento & desenvolvimento , Síndrome do Desconforto Respiratório/patologia , Animais , Edição de Genes , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Organismos Geneticamente Modificados , Receptores Virais/genética , Receptores Virais/metabolismo , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA