Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 8(5): 398-404, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19349971

RESUMO

Retaining a dissipation-free state while carrying large electrical currents is a challenge that needs to be solved to enable commercial applications of high-temperature superconductivity. Here, we show that the controlled combination of two effective pinning centres (randomly distributed nanoparticles and self-assembled columnar defects) is possible and effective. By simply changing the temperature or growth rate during pulsed-laser deposition of BaZrO(3)-doped YBa(2)Cu(3)O(7) films, we can vary the ratio of these defects, tuning the field and angular critical-current (Ic) performance to maximize Ic. We show that the defects' microstructure is governed by the growth kinetics and that the best results are obtained with a mixture of splayed columnar defects and random nanoparticles. The very high Ic arises from a complex vortex pinning landscape where columnar defects provide large pinning energy, while splay and nanoparticles inhibit flux creep. This knowledge is used to produce thick films with remarkable Ic(H) and nearly isotropic angle dependence.

2.
J Phys Chem B ; 111(26): 7497-500, 2007 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-17571878

RESUMO

Epitaxial ferromagnetic SrRuO3 thin films with a room-temperature resistivity of 300 microOmega.cm have been successfully grown on LaAlO3(001) substrates at a processing temperature in the range of 550-750 degrees C by a polymer-assisted deposition technique. X-ray diffraction analysis shows good epitaxial quality of SrRuO3 thin films, giving values of the full width at half-maximum (FWHM) of 0.42 degrees from the rocking curve for the (002) reflection and 1.1 degrees from the in-plane phi scan for the (204) reflection. Both the resistivity and the magnetization versus temperature measurements show that the SrRuO3 films are ferromagnetic with a transition temperature of 160 K. The spontaneous magnetization near the ferromagnetic transition follows the scaling law, and the low-temperature magnetization follows the Bloch law.

3.
Rev Sci Instrum ; 85(2): 025111, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593400

RESUMO

We have established a methodology to stabilize the laser energy density on a target surface in pulsed laser deposition of thin films. To control the focused laser spot on a target, we have imaged a defined aperture in the beamline (so called image-focus) instead of focusing the beam on a target based on a simple "lens-focus." To control the laser energy density on a target, we have introduced a continuously variable attenuator between the output of the laser and the imaged aperture to manipulate the energy to a desired level by running the laser in a "constant voltage" mode to eliminate changes in the lasers' beam dimensions. This methodology leads to much better controllability/reproducibility for reliable pulsed laser deposition of high performance electronic thin films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA