Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nucleic Acids Res ; 51(8): 3513-3528, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794719

RESUMO

Bacteriophage exclusion ('BREX') systems are multi-protein complexes encoded by a variety of bacteria and archaea that restrict phage by an unknown mechanism. One BREX factor, termed BrxL, has been noted to display sequence similarity to various AAA+ protein factors including Lon protease. In this study we describe multiple CryoEM structures of BrxL that demonstrate it to be a chambered, ATP-dependent DNA binding protein. The largest BrxL assemblage corresponds to a dimer of heptamers in the absence of bound DNA, versus a dimer of hexamers when DNA is bound in its central pore. The protein displays DNA-dependent ATPase activity, and ATP binding promotes assembly of the complex on DNA. Point mutations within several regions of the protein-DNA complex alter one or more in vitro behaviors and activities, including ATPase activity and ATP-dependent association with DNA. However, only the disruption of the ATPase active site fully eliminates phage restriction, indicating that other mutations can still complement BrxL function within the context of an otherwise intact BREX system. BrxL displays significant structural homology to MCM subunits (the replicative helicase in archaea and eukaryotes), implying that it and other BREX factors may collaborate to disrupt initiation of phage DNA replication.


Assuntos
Acinetobacter , Protease La , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Archaea/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , DNA/metabolismo , DNA Helicases/metabolismo , Ligação Proteica , Acinetobacter/enzimologia , Acinetobacter/virologia , Protease La/ultraestrutura
2.
Nature ; 561(7724): 485-491, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209393

RESUMO

The regular arrangements of ß-strands around a central axis in ß-barrels and of α-helices in coiled coils contrast with the irregular tertiary structures of most globular proteins, and have fascinated structural biologists since they were first discovered. Simple parametric models have been used to design a wide range of α-helical coiled-coil structures, but to date there has been no success with ß-barrels. Here we show that accurate de novo design of ß-barrels requires considerable symmetry-breaking to achieve continuous hydrogen-bond connectivity and eliminate backbone strain. We then build ensembles of ß-barrel backbone models with cavity shapes that match the fluorogenic compound DFHBI, and use a hierarchical grid-based search method to simultaneously optimize the rigid-body placement of DFHBI in these cavities and the identities of the surrounding amino acids to achieve high shape and chemical complementarity. The designs have high structural accuracy and bind and fluorescently activate DFHBI in vitro and in Escherichia coli, yeast and mammalian cells. This de novo design of small-molecule binding activity, using backbones custom-built to bind the ligand, should enable the design of increasingly sophisticated ligand-binding proteins, sensors and catalysts that are not limited by the backbone geometries available in known protein structures.


Assuntos
Compostos de Benzil/química , Fluorescência , Imidazolinas/química , Proteínas/química , Animais , Compostos de Benzil/análise , Células COS , Chlorocebus aethiops , Escherichia coli , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ligação de Hidrogênio , Imidazolinas/análise , Ligantes , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes , Leveduras
3.
Nucleic Acids Res ; 50(9): 5171-5190, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35511079

RESUMO

Bacteriophage exclusion ('BREX') phage restriction systems are found in a wide range of bacteria. Various BREX systems encode unique combinations of proteins that usually include a site-specific methyltransferase; none appear to contain a nuclease. Here we describe the identification and characterization of a Type I BREX system from Acinetobacter and the effect of deleting each BREX ORF on growth, methylation, and restriction. We identified a previously uncharacterized gene in the BREX operon that is dispensable for methylation but involved in restriction. Biochemical and crystallographic analyses of this factor, which we term BrxR ('BREX Regulator'), demonstrate that it forms a homodimer and specifically binds a DNA target site upstream of its transcription start site. Deletion of the BrxR gene causes cell toxicity, reduces restriction, and significantly increases the expression of BrxC. In contrast, the introduction of a premature stop codon into the BrxR gene, or a point mutation blocking its DNA binding ability, has little effect on restriction, implying that the BrxR coding sequence and BrxR protein play independent functional roles. We speculate that elements within the BrxR coding sequence are involved in cis regulation of anti-phage activity, while the BrxR protein itself plays an additional regulatory role, perhaps during horizontal transfer.


Assuntos
Acinetobacter/fisiologia , Fatores de Restrição Antivirais , Bacteriófagos , Acinetobacter/genética , Acinetobacter/virologia , Fatores de Restrição Antivirais/genética , Bacteriófagos/fisiologia , DNA/metabolismo , Metiltransferases/genética , Óperon
4.
Nucleic Acids Res ; 45(11): 6960-6970, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28460076

RESUMO

Transcription activator-like effectors (TALEs) recognize their DNA targets via tandem repeats, each specifying a single nucleotide base in a one-to-one sequential arrangement. Due to this modularity and their ability to bind long DNA sequences with high specificity, TALEs have been used in many applications. Contributions of individual repeat-nucleotide associations to affinity and specificity have been characterized. Here, using in vitro binding assays, we examined the relationship between the number of repeats in a TALE and its affinity, for both target and non-target DNA. Each additional repeat provides extra binding energy for the target DNA, with the gain decaying exponentially such that binding energy saturates. Affinity for non-target DNA also increases non-linearly with the number of repeats, but with a slower decay of gain. The difference between the effect of length on affinity for target versus non-target DNA manifests in specificity increasing then diminishing with increasing TALE length, peaking between 15 and 19 repeats. Modeling across different hypothetical saturation levels and rates of gain decay, reflecting different repeat compositions, yielded a similar range of specificity optima. This range encompasses the mean and median length of native TALEs, suggesting that these proteins as a group have evolved for maximum specificity.


Assuntos
Proteínas de Bactérias/química , Efetores Semelhantes a Ativadores de Transcrição/química , Proteínas de Bactérias/fisiologia , Sequência de Bases , Sítios de Ligação , DNA Bacteriano/química , Ligação Proteica , Sequências de Repetição em Tandem , Termodinâmica , Efetores Semelhantes a Ativadores de Transcrição/fisiologia , Xanthomonas
5.
Nucleic Acids Res ; 40(6): 2587-98, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22121229

RESUMO

Homing endonucleases (HEs) promote the evolutionary persistence of selfish DNA elements by catalyzing element lateral transfer into new host organisms. The high site specificity of this lateral transfer reaction, termed homing, reflects both the length (14-40 bp) and the limited tolerance of target or homing sites for base pair changes. In order to better understand molecular determinants of homing, we systematically determined the binding and cleavage properties of all single base pair variant target sites of the canonical LAGLIDADG homing endonucleases I-CreI and I-MsoI. These Chlorophyta algal HEs have very similar three-dimensional folds and recognize nearly identical 22 bp target sites, but use substantially different sets of DNA-protein contacts to mediate site-specific recognition and cleavage. The site specificity differences between I-CreI and I-MsoI suggest different evolutionary strategies for HE persistence. These differences also provide practical guidance in target site finding, and in the generation of HE variants with high site specificity and cleavage activity, to enable genome engineering applications.


Assuntos
Clivagem do DNA , Enzimas de Restrição do DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Evolução Molecular , Pareamento de Bases , DNA/química , DNA/metabolismo , Enzimas de Restrição do DNA/química , Endodesoxirribonucleases/química , Engenharia Genética , Genômica , Humanos , Especificidade por Substrato
6.
PLoS One ; 18(11): e0291267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37939088

RESUMO

The chemical modification of RNA bases represents a ubiquitous activity that spans all domains of life. Pseudouridylation is the most common RNA modification and is observed within tRNA, rRNA, ncRNA and mRNAs. Pseudouridine synthase or 'PUS' enzymes include those that rely on guide RNA molecules and others that function as 'stand-alone' enzymes. Among the latter, several have been shown to modify mRNA transcripts. Although recent studies have defined the structural requirements for RNA to act as a PUS target, the mechanisms by which PUS1 recognizes these target sequences in mRNA are not well understood. Here we describe the crystal structure of yeast PUS1 bound to an RNA target that we identified as being a hot spot for PUS1-interaction within a model mRNA at 2.4 Å resolution. The enzyme recognizes and binds both strands in a helical RNA duplex, and thus guides the RNA containing the target uridine to the active site for subsequent modification of the transcript. The study also allows us to show the divergence of related PUS1 enzymes and their corresponding RNA target specificities, and to speculate on the basis by which PUS1 binds and modifies mRNA or tRNA substrates.


Assuntos
Transferases Intramoleculares , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/metabolismo , RNA/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , RNA de Transferência/metabolismo , Pseudouridina/metabolismo
7.
Nat Commun ; 14(1): 6746, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875492

RESUMO

De novo protein design methods can create proteins with folds not yet seen in nature. These methods largely focus on optimizing the compatibility between the designed sequence and the intended conformation, without explicit consideration of protein folding pathways. Deeply knotted proteins, whose topologies may introduce substantial barriers to folding, thus represent an interesting test case for protein design. Here we report our attempts to design proteins with trefoil (31) and pentafoil (51) knotted topologies. We extended previously described algorithms for tandem repeat protein design in order to construct deeply knotted backbones and matching designed repeat sequences (N = 3 repeats for the trefoil and N = 5 for the pentafoil). We confirmed the intended conformation for the trefoil design by X ray crystallography, and we report here on this protein's structure, stability, and folding behaviour. The pentafoil design misfolded into an asymmetric structure (despite a 5-fold symmetric sequence); two of the four repeat-repeat units matched the designed backbone while the other two diverged to form local contacts, leading to a trefoil rather than pentafoil knotted topology. Our results also provide insights into the folding of knotted proteins.


Assuntos
Dobramento de Proteína , Proteínas , Conformação Proteica , Proteínas/genética , Proteínas/química , Domínios Proteicos , Sequências de Repetição em Tandem/genética
8.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790440

RESUMO

Sequence-specific DNA-binding proteins (DBPs) play critical roles in biology and biotechnology, and there has been considerable interest in the engineering of DBPs with new or altered specificities for genome editing and other applications. While there has been some success in reprogramming naturally occurring DBPs using selection methods, the computational design of new DBPs that recognize arbitrary target sites remains an outstanding challenge. We describe a computational method for the design of small DBPs that recognize specific target sequences through interactions with bases in the major groove, and employ this method in conjunction with experimental screening to generate binders for 5 distinct DNA targets. These binders exhibit specificity closely matching the computational models for the target DNA sequences at as many as 6 base positions and affinities as low as 30-100 nM. The crystal structure of a designed DBP-target site complex is in close agreement with the design model, highlighting the accuracy of the design method. The designed DBPs function in both Escherichia coli and mammalian cells to repress and activate transcription of neighboring genes. Our method is a substantial step towards a general route to small and hence readily deliverable sequence-specific DBPs for gene regulation and editing.

9.
Commun Biol ; 4(1): 1240, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716407

RESUMO

Circular tandem repeat proteins ('cTRPs') are de novo designed protein scaffolds (in this and prior studies, based on antiparallel two-helix bundles) that contain repeated protein sequences and structural motifs and form closed circular structures. They can display significant stability and solubility, a wide range of sizes, and are useful as protein display particles for biotechnology applications. However, cTRPs also demonstrate inefficient self-assembly from smaller subunits. In this study, we describe a new generation of cTRPs, with longer repeats and increased interaction surfaces, which enhanced the self-assembly of two significantly different sizes of homotrimeric constructs. Finally, we demonstrated functionalization of these constructs with (1) a hexameric array of peptide-binding SH2 domains, and (2) a trimeric array of anti-SARS CoV-2 VHH domains. The latter proved capable of sub-nanomolar binding affinities towards the viral receptor binding domain and potent viral neutralization function.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Engenharia de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , SARS-CoV-2/metabolismo , Sequências de Repetição em Tandem , Sequência de Aminoácidos , COVID-19/virologia , Simulação por Computador , Cristalização , Células HEK293 , Humanos , Modelos Moleculares , Testes de Neutralização , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
10.
Nat Commun ; 12(1): 856, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558528

RESUMO

Through the efforts of many groups, a wide range of fluorescent protein reporters and sensors based on green fluorescent protein and its relatives have been engineered in recent years. Here we explore the incorporation of sensing modalities into de novo designed fluorescence-activating proteins, called mini-fluorescence-activating proteins (mFAPs), that bind and stabilize the fluorescent cis-planar state of the fluorogenic compound DFHBI. We show through further design that the fluorescence intensity and specificity of mFAPs for different chromophores can be tuned, and the fluorescence made sensitive to pH and Ca2+ for real-time fluorescence reporting. Bipartite split mFAPs enable real-time monitoring of protein-protein association and (unlike widely used split GFP reporter systems) are fully reversible, allowing direct readout of association and dissociation events. The relative ease with which sensing modalities can be incorporated and advantages in smaller size and photostability make de novo designed fluorescence-activating proteins attractive candidates for optical sensor engineering.


Assuntos
Proteínas Luminescentes/metabolismo , Acetilcolina/metabolismo , Animais , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , Fluorescência , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/química , Modelos Moleculares
11.
Nat Struct Mol Biol ; 27(4): 342-350, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203491

RESUMO

Protein engineering has enabled the design of molecular scaffolds that display a wide variety of sizes, shapes, symmetries and subunit compositions. Symmetric protein-based nanoparticles that display multiple protein domains can exhibit enhanced functional properties due to increased avidity and improved solution behavior and stability. Here we describe the creation and characterization of a computationally designed circular tandem repeat protein (cTRP) composed of 24 identical repeated motifs, which can display a variety of functional protein domains (cargo) at defined positions around its periphery. We demonstrate that cTRP nanoparticles can self-assemble from smaller individual subunits, can be produced from prokaryotic and human expression platforms, can employ a variety of cargo attachment strategies and can be used for applications (such as T-cell culture and expansion) requiring high-avidity molecular interactions on the cell surface.


Assuntos
Nanopartículas/química , Engenharia de Proteínas , Proteínas/química , Sequências de Repetição em Tandem/genética , Motivos de Aminoácidos/genética , Técnicas de Cultura de Células , Humanos , Modelos Moleculares , Domínios Proteicos/genética , Estabilidade Proteica , Proteínas/genética , Linfócitos T/química
12.
Nat Commun ; 5: 3977, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24915045

RESUMO

It has been theorized that inducing extreme reproductive sex ratios could be a method to suppress or eliminate pest populations. Limited knowledge about the genetic makeup and mode of action of naturally occurring sex distorters and the prevalence of co-evolving suppressors has hampered their use for control. Here we generate a synthetic sex distortion system by exploiting the specificity of the homing endonuclease I-PpoI, which is able to selectively cleave ribosomal gene sequences of the malaria vector Anopheles gambiae that are located exclusively on the mosquito's X chromosome. We combine structure-based protein engineering and molecular genetics to restrict the activity of the potentially toxic endonuclease to spermatogenesis. Shredding of the paternal X chromosome prevents it from being transmitted to the next generation, resulting in fully fertile mosquito strains that produce >95% male offspring. We demonstrate that distorter male mosquitoes can efficiently suppress caged wild-type mosquito populations, providing the foundation for a new class of genetic vector control strategies.


Assuntos
Anopheles/parasitologia , Insetos Vetores , Malária/transmissão , Controle de Mosquitos , Razão de Masculinidade , Animais , Animais Geneticamente Modificados , Anopheles/genética , Feminino , Masculino , Cromossomo X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA