Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 30(7): 1027-1039, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699019

RESUMO

Joint profiling of transcriptome and chromatin accessibility within single cells allows for the deconstruction of the complex relationship between transcriptional states and upstream regulatory programs determining different cell fates. Here, we developed an automated method with high sensitivity, assay for single-cell transcriptome and accessibility regions (ASTAR-seq), for simultaneous measurement of whole-cell transcriptome and chromatin accessibility within the same single cell. To show the utility of ASTAR-seq, we profiled 384 mESCs under naive and primed pluripotent states as well as a two-cell like state, 424 human cells of various lineage origins (BJ, K562, JK1, and Jurkat), and 480 primary cord blood cells undergoing erythroblast differentiation. With the joint profiles, we configured the transcriptional and chromatin accessibility landscapes of discrete cell states, uncovered linked sets of cis-regulatory elements and target genes unique to each state, and constructed interactome and transcription factor (TF)-centered upstream regulatory networks for various cell states.


Assuntos
Cromatina/metabolismo , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Análise de Célula Única/métodos , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Células-Tronco Embrionárias , Epigênese Genética , Eritroblastos/citologia , Eritroblastos/metabolismo , Humanos , Camundongos , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo , Transcriptoma
2.
Microb Pathog ; 158: 105105, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34311016

RESUMO

COVID-19 exhibits a global health threat among the elderly and the population with underlying health conditions. During infection, the host's innate immune response acts as a frontline of defense by releasing cytokines such as type I interferon (IFN α and ß) thereby initiating antiviral activity. However, this particular interferon response is interrupted by factors such as SARS-CoV-2 non-structural proteins, aging, diabetes, and germ-line errors eventually making the host more susceptible to illness. Therefore, enhancing the host's innate immune response by administering type I IFN could be an effective treatment against COVID-19. Here, we highlight the importance of innate immune response and the role of IFN ß monotherapy against COVID-19.


Assuntos
COVID-19 , Interferon Tipo I , Idoso , Humanos , Imunidade Inata , Interferon beta , SARS-CoV-2
3.
Nucleic Acids Res ; 46(16): e99, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29893931

RESUMO

Advances in stem cell engineering, gene therapy and molecular medicine often involve genome engineering at a cellular level. However, functionally large or multi transgene cassette insertion into the human genome still remains a challenge. Current practices such as random transgene integration or targeted endonuclease-based genome editing are suboptimal and might pose safety concerns. Taking this into consideration, we previously developed a transgenesis tool derived from phage λ integrase (Int) that precisely recombines large plasmid DNA into an endogenous sequence found in human Long INterspersed Elements-1 (LINE-1). Despite this advancement, biosafety concerns associated with bacterial components of plasmids, enhanced uptake and efficient transgene expression remained problematic. We therefore further improved and herein report a more superior Int-based transgenesis tool. This novel Int platform allows efficient and easy derivation of sufficient amounts of seamless supercoiled transgene vectors from conventional plasmids via intramolecular recombination as well as subsequent intermolecular site-specific genome integration into LINE-1. Furthermore, we identified certain LINE-1 as preferred insertion sites for Int-mediated seamless vector transgenesis, and showed that targeted anti-CD19 chimeric antigen receptor gene integration achieves high-level sustained transgene expression in human embryonic stem cell clones for potential downstream therapeutic applications.


Assuntos
Bacteriófago lambda/genética , Engenharia Genética/métodos , Vetores Genéticos/genética , Integrases/genética , Proteínas Recombinantes de Fusão/metabolismo , Transgenes/genética , Bacteriófago lambda/enzimologia , Edição de Genes/métodos , Expressão Gênica , Terapia Genética/métodos , Humanos , Integrases/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/uso terapêutico
4.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599919

RESUMO

Key DNA transactions, such as genome replication and transcription, rely on the speedy translocation of specialized protein complexes along a double-stranded, right-handed helical template. Physical tethering of these molecular machines during translocation, in conjunction with their internal architectural features, generates DNA topological strain in the form of template supercoiling. It is known that the build-up of transient excessive supercoiling poses severe threats to genome function and stability and that highly specialized enzymes-the topoisomerases (TOP)-have evolved to mitigate these threats. Furthermore, due to their intracellular abundance and fast supercoil relaxation rates, it is generally assumed that these enzymes are sufficient in coping with genome-wide bursts of excessive supercoiling. However, the recent discoveries of chromatin architectural factors that play important accessory functions have cast reasonable doubts on this concept. Here, we reviewed the background of these new findings and described emerging models of how these accessory factors contribute to supercoil homeostasis. We focused on DNA replication and the generation of positive (+) supercoiling in front of replisomes, where two accessory factors-GapR and HMGA2-from pro- and eukaryotic cells, respectively, appear to play important roles as sinks for excessive (+) supercoiling by employing a combination of supercoil constrainment and activation of topoisomerases. Looking forward, we expect that additional factors will be identified in the future as part of an expanding cellular repertoire to cope with bursts of topological strain. Furthermore, identifying antagonists that target these accessory factors and work synergistically with clinically relevant topoisomerase inhibitors could become an interesting novel strategy, leading to improved treatment outcomes.


Assuntos
Cromatina/química , Cromatina/genética , Replicação do DNA , DNA Super-Helicoidal , Regulação da Expressão Gênica , Transcrição Gênica , Animais , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteína HMGA2/metabolismo , Humanos
5.
Angew Chem Int Ed Engl ; 59(32): 13295-13304, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32337801

RESUMO

The F1 FO -ATP synthase is required for growth and viability of Mycobacterium tuberculosis and is a validated clinical target. A mycobacterium-specific loop of the enzyme's rotary γ subunit plays a role in the coupling of ATP synthesis within the enzyme complex. We report the discovery of a novel antimycobacterial, termed GaMF1, that targets this γ subunit loop. Biochemical and NMR studies show that GaMF1 inhibits ATP synthase activity by binding to the loop. GaMF1 is bactericidal and is active against multidrug- as well as bedaquiline-resistant strains. Chemistry efforts on the scaffold revealed a dynamic structure activity relationship and delivered analogues with nanomolar potencies. Combining GaMF1 with bedaquiline or novel diarylquinoline analogues showed potentiation without inducing genotoxicity or phenotypic changes in a human embryonic stem cell reporter assay. These results suggest that GaMF1 presents an attractive lead for the discovery of a novel class of anti-tuberculosis F-ATP synthase inhibitors.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , ATPases Bacterianas Próton-Translocadoras/antagonistas & inibidores , Diarilquinolinas/farmacologia , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Benzamidas/química , Benzamidas/farmacologia , Benzamidas/toxicidade , Sinergismo Farmacológico , Células-Tronco Embrionárias/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/toxicidade , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/toxicidade , Relação Estrutura-Atividade
6.
Trends Biochem Sci ; 39(5): 219-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24637041

RESUMO

Dynamic (-) DNA supercoiling generated in the wake of translocating protein complexes is known to occur during transcription. Recent studies indicate that (-) superhelical tension also builds up specifically in the leading duplex during replication. Here, we argue that this unrecognized supercoiling is causally involved in the regulation of key DNA transactions and deserves further consideration.


Assuntos
DNA/química , Replicação do DNA , DNA Bacteriano/química , DNA Polimerase Dirigida por DNA/metabolismo , Conformação de Ácido Nucleico , Transcrição Gênica
7.
Nucleic Acids Res ; 44(22): e162, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27587582

RESUMO

HMGA2 is an important chromatin factor that interacts with DNA via three AT-hook domains, thereby regulating chromatin architecture and transcription during embryonic and fetal development. The protein is absent from differentiated somatic cells, but aberrantly re-expressed in most aggressive human neoplasias where it is causally linked to cell transformation and metastasis. DNA-binding also enables HMGA2 to protect cancer cells from DNA-damaging agents. HMGA2 therefore is considered to be a prime drug target for many aggressive malignancies. Here, we have developed a broadly applicable cell-based reporter system which can identify HMGA2 antagonists targeting functionally important protein domains, as validated with the known AT-hook competitor netropsin. In addition, high-throughput screening can uncover functional links between HMGA2 and cellular factors important for cell transformation. This is demonstrated with the discovery that HMGA2 potentiates the clinically important topoisomerase I inhibitor irinotecan/SN-38 in trapping the enzyme in covalent DNA-complexes, thereby attenuating transcription.


Assuntos
Camptotecina/análogos & derivados , DNA Topoisomerases Tipo I/fisiologia , Proteína HMGA2/fisiologia , Inibidores da Topoisomerase I/farmacologia , Sequência de Aminoácidos , Camptotecina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Estabilidade Enzimática , Genes Reporter , Células HEK293 , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Irinotecano , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Netropsina/farmacologia , Regiões Promotoras Genéticas , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional
8.
Nucleic Acids Res ; 44(6): e55, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26673710

RESUMO

Genome engineering of human cells plays an important role in biotechnology and molecular medicine. In particular, insertions of functional multi-transgene cassettes into suitable endogenous sequences will lead to novel applications. Although several tools have been exploited in this context, safety issues such as cytotoxicity, insertional mutagenesis and off-target cleavage together with limitations in cargo size/expression often compromise utility. Phage λ integrase (Int) is a transgenesis tool that mediates conservative site-specific integration of 48 kb DNA into a safe harbor site of the bacterial genome. Here, we show that an Int variant precisely recombines large episomes into a sequence, term edattH4X, found in 1000 human Long INterspersed Elements-1 (LINE-1). We demonstrate single-copy transgenesis through attH4X-targeting in various cell lines including hESCs, with the flexibility of selecting clones according to transgene performance and downstream applications. This is exemplified with pluripotency reporter cassettes and constitutively expressed payloads that remain functional in LINE1-targeted hESCs and differentiated progenies. Furthermore, LINE-1 targeting does not induce DNA damage-response or chromosomal aberrations, and neither global nor localized endogenous gene expression is substantially affected. Hence, this simple transgene addition tool should become particularly useful for applications that require engineering of the human genome with multi-transgenes.


Assuntos
Técnicas de Transferência de Genes , Engenharia Genética/métodos , Integrases/genética , Plasmídeos/metabolismo , Transgenes , Proteínas Virais/genética , Bacteriófago lambda/química , Bacteriófago lambda/enzimologia , Bacteriófago lambda/genética , Sequência de Bases , Linhagem Celular Tumoral , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Genes Reporter , Genoma Humano , Humanos , Integrases/metabolismo , Elementos Nucleotídeos Longos e Dispersos , Dados de Sequência Molecular , Plasmídeos/química , Proteínas Virais/metabolismo
9.
Nucleic Acids Res ; 43(11): 5284-96, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25916851

RESUMO

Platinum-based anticancer drugs act therapeutically by forming DNA adducts, but suffer from severe toxicity and resistance problems, which have not been overcome in spite of decades of research. And yet defined chromatin targets have generally not been considered in the drug development process. Here we designed novel platinum-intercalator species to target a highly deformed DNA site near the nucleosome center. Between two seemingly similar structural isomers, we find a striking difference in DNA site selectivity in vitro, which comes about from stereochemical constraints that limit the reactivity of the trans isomer to special DNA sequence elements while still allowing the cis isomer to efficiently form adducts at internal sites in the nucleosome core. This gives the potential for controlling nucleosome site targeting in vivo, which would engender sensitivity to epigenetic distinctions and in particular cell type/status-dependent differences in nucleosome positioning. Moreover, while both compounds yield very similar DNA-adduct structures and display antitumor cell activity rivalling that of cisplatin, the cis isomer, relative to the trans, has a much more rapid cytotoxic effect and distinct impact on cell function. The novel stereochemical principles for controlling DNA site selectivity we discovered could aid in the design of improved site discriminating agents.


Assuntos
Antineoplásicos/química , Substâncias Intercalantes/química , Naftalimidas/química , Nucleossomos/química , Compostos Organoplatínicos/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Adutos de DNA/análise , Humanos , Substâncias Intercalantes/toxicidade , Naftalimidas/toxicidade , Compostos Organoplatínicos/toxicidade , Estereoisomerismo
10.
PLoS One ; 19(2): e0292479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38349923

RESUMO

Recombinase enzymes are extremely efficient at integrating very large DNA fragments into target genomes. However, intrinsic sequence specificities curtail their use to DNA sequences with sufficient homology to endogenous target motifs. Extensive engineering is therefore required to broaden applicability and robustness. Here, we describe the directed evolution of novel lambda integrase variants capable of editing exogenous target sequences identified in the diatom Phaeodactylum tricornutum and the algae Nannochloropsis oceanica. These microorganisms hold great promise as conduits for green biomanufacturing and carbon sequestration. The evolved enzyme variants show >1000-fold switch in specificity towards the non-natural target sites when assayed in vitro. A single-copy target motif in the human genome with homology to the Nannochloropsis oceanica site can also be efficiently targeted using an engineered integrase, both in vitro and in human cells. The developed integrase variants represent useful additions to the DNA editing toolbox, with particular application for targeted genomic insertion of large DNA cargos.


Assuntos
Diatomáceas , Estramenópilas , Humanos , Integrases/genética , Genoma Humano/genética , DNA , Genômica , Diatomáceas/genética , Estramenópilas/genética , Edição de Genes
11.
Aging Cell ; 23(5): e14105, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38504487

RESUMO

Hutchinson-Gilford Progeria syndrome (HGPS) is a severe premature ageing disorder caused by a 50 amino acid truncated (Δ50AA) and permanently farnesylated lamin A (LA) mutant called progerin. On a cellular level, progerin expression leads to heterochromatin loss, impaired nucleocytoplasmic transport, telomeric DNA damage and a permanent growth arrest called cellular senescence. Although the genetic basis for HGPS has been elucidated 20 years ago, the question whether the Δ50AA or the permanent farnesylation causes cellular defects has not been addressed. Moreover, we currently lack mechanistic insight into how the only FDA-approved progeria drug Lonafarnib, a farnesyltransferase inhibitor (FTI), ameliorates HGPS phenotypes. By expressing a variety of LA mutants using a doxycycline-inducible system, and in conjunction with FTI, we demonstrate that the permanent farnesylation, and not the Δ50AA, is solely responsible for progerin-induced cellular defects, as well as its rapid accumulation and slow clearance. Importantly, FTI does not affect clearance of progerin post-farnesylation and we demonstrate that early, but not late FTI treatment prevents HGPS phenotypes. Collectively, our study unravels the precise contributions of progerin's permanent farnesylation to its turnover and HGPS cellular phenotypes, and how FTI treatment ameliorates these. These findings are applicable to other diseases associated with permanently farnesylated proteins, such as adult-onset autosomal dominant leukodystrophy.


Assuntos
Lamina Tipo A , Progéria , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Humanos , Progéria/metabolismo , Progéria/genética , Progéria/patologia , Progéria/tratamento farmacológico , Farnesiltranstransferase/metabolismo , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/genética , Prenilação de Proteína , Dibenzocicloeptenos , Piperidinas , Piridinas
12.
Proc Natl Acad Sci U S A ; 107(4): 1397-401, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20080702

RESUMO

A platform for in situ and real-time measurement of protein-induced conformational changes in dsDNA is presented. We combine electrical orientation of surface-bound dsDNA probes with an optical technique to measure the kinetics of DNA conformational changes. The sequence-specific Escherichia coli integration host factor is utilized to demonstrate protein-induced bending upon binding of integration host factor to dsDNA probes. The effects of probe surface density on binding/bending kinetics are investigated. The platform can accommodate individual spots of microarrayed dsDNA on individually controlled, lithographically designed electrodes, making it amenable for use as a high throughput assay.


Assuntos
Sondas de DNA/análise , DNA Bacteriano/análise , Proteínas de Escherichia coli/análise , Escherichia coli/química , Conformação de Ácido Nucleico , Sondas de DNA/química , DNA Bacteriano/química , Eletrodos , Proteínas de Escherichia coli/química , Ouro/química , Espectrometria de Fluorescência , Fatores de Tempo
13.
Front Bioeng Biotechnol ; 11: 1198465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425360

RESUMO

Reliable cell-based platforms to test and/or produce biologics in a sustainable manner are important for the biotech industry. Utilizing enhanced λ integrase, a sequence-specific DNA recombinase, we developed a novel transgenesis platform involving a fully characterized single genomic locus as an artificial landing pad for transgene insertion in human Expi293F cells. Importantly, transgene instability and variation in expression were not observed in the absence of selection pressure, thus enabling reliable long-term biotherapeutics testing or production. The artificial landing pad for λ integrase can be targeted with multi-transgene constructs and offers future modularity involving additional genome manipulation tools to generate sequential or nearly seamless insertions. We demonstrated broad utility with expression constructs for anti PD-1 monoclonal antibodies and showed that the orientation of heavy and light chain transcription units profoundly affected antibody expression levels. In addition, we demonstrated encapsulation of our PD-1 platform cells into bio-compatible mini-bioreactors and the continued secretion of antibodies, thus providing a basis for future cell-based applications for more effective and affordable therapies.

14.
FEBS Lett ; 597(15): 1977-1988, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37259564

RESUMO

The architectural chromatin factor high-mobility group AT-hook 2 (HMGA2) is causally involved in several human malignancies and pathologies. HMGA2 is not expressed in most normal adult somatic cells, which renders the protein an attractive drug target. An established cell-based compound library screen identified the fibroblast growth factor receptor (FGFR) inhibitor PD173074 as an antagonist of HMGA2-mediated transcriptional reporter gene activation. We determined that PD173074 binds the C-terminus of HMGA2 and interferes with functional coordination of the three AT-hook DNA-binding domains mediated by the C-terminus. The HMGA2-antagonistic effect of PD173074 on transcriptional activation may therefore result from an induced altered DNA-binding mode of HMGA2. PD173074 as a novel HMGA2-specific antagonist could trigger the development of derivates with enhanced attributes and clinical potential.


Assuntos
Neoplasias , Receptores de Fatores de Crescimento de Fibroblastos , Adulto , Humanos , Ativação Transcricional , Cromatina , DNA/metabolismo , Proteína HMGA2/genética , Proteína HMGA2/metabolismo
15.
Nat Commun ; 14(1): 1919, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024489

RESUMO

Alternative lengthening of telomeres (ALT) supports telomere maintenance in 10-15% of cancers, thus representing a compelling target for therapy. By performing anti-cancer compound library screen on isogenic cell lines and using extrachromosomal telomeric C-circles, as a bona fide marker of ALT activity, we identify a receptor tyrosine kinase inhibitor ponatinib that deregulates ALT mechanisms, induces telomeric dysfunction, reduced ALT-associated telomere synthesis, and targets, in vivo, ALT-positive cells. Using RNA-sequencing and quantitative phosphoproteomic analyses, combined with C-circle level assessment, we find an ABL1-JNK-JUN signalling circuit to be inhibited by ponatinib and to have a role in suppressing telomeric C-circles. Furthermore, transcriptome and interactome analyses suggest a role of JUN in DNA damage repair. These results are corroborated by synergistic drug interactions between ponatinib and either DNA synthesis or repair inhibitors, such as triciribine. Taken together, we describe here a signalling pathway impacting ALT which can be targeted by a clinically approved drug.


Assuntos
Transdução de Sinais , Telômero , Sobrevivência Celular , Transdução de Sinais/efeitos dos fármacos , Regulação da Expressão Gênica , Reparo do DNA , Replicação do DNA , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular Tumoral
16.
Nucleic Acids Res ; 38(4): e25, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19966270

RESUMO

In vitro compartmentalization (IVC) was employed for the first time to select for novel bacteriophage lambda integrase variants displaying significantly enhanced recombination activity on a non-cognate target DNA sequence. These variants displayed up to 9-fold increased recombination activity over the parental enzyme, and one mutant recombined the chosen non-cognate substrate more efficiently than the parental enzyme recombined the wild-type DNA substrate. The in vitro specificity phenotype extended to the intracellular recombination of episomal vectors in HEK293 cells. Surprisingly, mutations conferring the strongest phenotype do not occur in the lambda integrase core-binding domain, which is known to interact directly with cognate target sequences. Instead, they locate to the N-terminal domain which allosterically modulates integrase activity, highlighting a previously unknown role for this domain in directing integrase specificity. The method we describe provides a robust, completely in vitro platform for the development of novel integrase reagent tools for in vitro DNA manipulation and other biotechnological applications.


Assuntos
Bacteriófago lambda/enzimologia , Evolução Molecular Direcionada/métodos , Integrases/genética , Sítios de Ligação Microbiológicos , Sequência de Bases , Linhagem Celular , DNA/química , DNA/metabolismo , Humanos , Integrases/química , Integrases/metabolismo , Mutação , Plasmídeos/metabolismo , Recombinação Genética , Alinhamento de Sequência , Especificidade por Substrato
17.
PLoS One ; 17(9): e0270173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36149906

RESUMO

Seamless DNA vectors derived from bacterial plasmids are devoid of bacterial genetic elements and represent attractive alternatives for biomedical applications including DNA vaccines. Larger scale production of seamless vectors employs engineered Escherichia coli strains in order to enable tightly regulated expression of site-specific DNA recombinases which precisely delete unwanted sequences from bacterial plasmids. As a novel component of a developing lambda integrase genome editing platform, we describe here strain MG1655-ISC as a means to easily produce different scales of seamless vectors, ranging in size from a few hundred base pairs to more than ten kilo base pairs. Since we employed an engineered lambda integrase that is able to efficiently recombine pairs of DNA crossover sites that differ in sequence, the resulting seamless vectors will be useful for subsequent genome editing in higher eukaryotes to accommodate variations in target site sequences. Future inclusion of single cognate sites for other genome targeting systems could enable modularity. These features, together with the demonstrated simplicity of in vivo seamless vector production, add to their utility in the biomedical space.


Assuntos
Bacteriófago lambda , Vacinas de DNA , Bacteriófago lambda/genética , DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/genética , Integrases/genética , Integrases/metabolismo , Plasmídeos/genética , Recombinação Genética , Vacinas de DNA/genética
18.
Nucleic Acids Res ; 37(8): 2737-46, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19276205

RESUMO

Double-stranded DNA is a dynamic molecule that adopts different secondary structures. Experimental evidence indicates Z-DNA plays roles in DNA transactions such as transcription, chromatin remodeling and recombination. Furthermore, our computational analysis revealed that sequences with high Z-DNA forming potential at moderate levels of DNA supercoiling are enriched in human promoter regions. However, the actual distribution of Z-DNA segments in genomes of mammalian cells has been elusive due to the unstable nature of Z-DNA and lack of specific probes. Here we present a first human genome map of most stable Z-DNA segments obtained with A549 tumor cells. We used the Z-DNA binding domain, Z alpha, of the RNA editing enzyme ADAR1 as probe in conjunction with a novel chromatin affinity precipitation strategy. By applying stringent selection criteria, we identified 186 genomic Z-DNA hotspots. Interestingly, 46 hotspots were located in centromeres of 13 human chromosomes. There was a very strong correlation between these hotspots and high densities of single nucleotide polymorphism. Our study indicates that genetic instability and rapid evolution of human centromeres might, at least in part, be driven by Z-DNA segments. Contrary to in silico predictions, however, we found that only two of the 186 hotspots were located in promoter regions.


Assuntos
Adenosina Desaminase/química , DNA Forma Z/análise , Genoma Humano , Sítios de Ligação , Linhagem Celular Tumoral , DNA Forma Z/química , Humanos , Sondas Moleculares/química , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA , Análise de Sequência de DNA , Software
19.
Nucleic Acids Res ; 37(13): 4371-84, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19465398

RESUMO

HMGA proteins are not translated in normal human somatic cells, but are present in high copy numbers in pluripotent embryonic stem cells and most neoplasias. Correlations between the degree of malignancy, patient prognostic index and HMGA levels have been firmly established. Intriguingly, HMGA2 is also found in rare tumor-inducing cells which are resistant to chemotherapy. Here, we demonstrate that HMGA1a/b and HMGA2 possess intrinsic dRP and AP site cleavage activities, and that lysines and arginines in the AT-hook DNA-binding domains function as nucleophiles. We also show that HMGA2 can be covalently trapped at genomic abasic sites in cancer cells. By employing a variety of cell-based assays, we provide evidence that the associated lyase activities promote cellular resistance against DNA damage that is targeted by base excision repair (BER) pathways, and that this protection directly correlates with the level of HMGA2 expression. In addition, we demonstrate an interaction between human AP endonuclease 1 and HMGA2 in cancer cells, which supports our conclusion that HMGA2 can be incorporated into the cellular BER machinery. Our study thus identifies an unexpected role for HMGA2 in DNA repair in cancer cells which has important clinical implications for disease diagnosis and therapy.


Assuntos
Antineoplásicos/toxicidade , Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteína HMGA2/metabolismo , Neoplasias/enzimologia , Fósforo-Oxigênio Liases/metabolismo , Motivos AT-Hook , Linhagem Celular Tumoral , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Resistencia a Medicamentos Antineoplásicos , Genoma Humano , Proteína HMGA2/química , Humanos , Hidroxiureia/toxicidade , Metanossulfonato de Metila/toxicidade , Mutagênicos/toxicidade , Neoplasias/tratamento farmacológico , Neoplasias/genética
20.
Cell Physiol Biochem ; 26(2): 105-24, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20798495

RESUMO

The generation of induced pluripotent stem (iPS) cells by controlled delivery of reprogramming factors enables the derivation of pluripotent cells from a variety of somatic cell types. Patient-tailored iPS cells remove the major roadblock of immune rejection for clinical applications associated with the use of human embryonic stem (hES) cells. Beside therapeutic issues, iPS cell technology opens the door for broader research on human pluripotent cells because ethical limitations are lifted with iPS cells compared to hES cells. Scientists are now able to generate iPS cells for disease modelling and use them in basic research of physiological and pathophysiological models. In this concise review, we discuss the state of the art in the field of iPS cell induction by cell fusion or defined factors. Techniques to derive pluripotent cells from somatic sources are introduced and discussed, as well as some biological factors that influence the generation of iPS cells. We compare ES and iPS cells to answer the question whether these cells are identical, and we finish with an outlook on clinical research with iPS cells with a focus on cardiovascular medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Doenças Cardiovasculares/terapia , Reprogramação Celular , Células-Tronco Embrionárias/fisiologia , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA