Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 71(12): 2943-2955, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35523889

RESUMO

Invariant natural killer T cells (iNKT cells) express a semi-invariant T cell receptor that recognizes certain glycolipids (including α-galactosylceramide, αGC) bound to CD1d, and can induce potent antitumor responses. Here, we assessed whether αGC could enhance the efficacy of a GM-CSF-producing tumor cell vaccine in the transgenic SV40 T antigen-driven TRAMP prostate cancer model. In healthy mice, we initially found that optimal T cell responses were obtained with αGC-pulsed TRAMP-C2 cells secreting GM-CSF and milk fat globule epidermal growth factor protein-8 (MFG-E8) with an RGD to RGE mutation (GM-CSF/RGE TRAMP-C2), combined with systemic low dose IL-12. In a therapeutic model, transgenic TRAMP mice were then castrated at ~ 20 weeks, followed by treatment with the combination vaccine. Untreated mice succumbed to tumor by ~ 40 weeks, but survival was markedly prolonged by vaccine treatment, with most mice surviving past 80 weeks. Prostates in the treated mice were heavily infiltrated with T cells and iNKT cells, which both secreted IFNγ in response to tumor cells. The vaccine was not effective if the αGC, IL-12, or GM-CSF secretion was eliminated. Finally, immunized mice were fully resistant to challenge with TRAMP-C2 cells. Together these findings support further development of therapeutic vaccines that exploit iNKT cell activation.


Assuntos
Vacinas Anticâncer , Células T Matadoras Naturais , Neoplasias da Próstata , Masculino , Camundongos , Animais , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Ativação Linfocitária , Galactosilceramidas , Interleucina-12/farmacologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/metabolismo , Vacinas Combinadas/farmacologia , Antígenos Virais de Tumores , Família de Proteínas EGF/metabolismo , Família de Proteínas EGF/farmacologia , Oligopeptídeos/farmacologia , Camundongos Endogâmicos C57BL
2.
Adv Exp Med Biol ; 1270: 73-87, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33123994

RESUMO

Accumulating studies have clearly demonstrated high concentrations of extracellular ATP (eATP) within the tumor microenvironment (TME). Implications of these findings are multifold as ATP-mediated purinergic signaling has been shown to mediate a variety of cancer-related processes, including cell migration, resistance to cytotoxic therapy, and immune regulation. Broad roles of ATP within the tumor microenvironment are linked to the abundance of ATP-regulated purinergic receptors on cancer and stromal and various immune cell types, as well as on the importance of ATP release and signaling in the regulation of multiple cellular processes. ATP release and downstream purinergic signaling are emerging as a central regulator of tumor growth and an important target for therapeutic intervention. In this chapter, we summarize the major roles of purinergic signaling in the tumor microenvironment with a specific focus on its critical roles in the induction of immunogenic cancer cell death and immune modulation.


Assuntos
Trifosfato de Adenosina/metabolismo , Neoplasias/metabolismo , Receptores Purinérgicos/metabolismo , Transdução de Sinais , Microambiente Tumoral , Movimento Celular , Humanos
3.
J Transl Med ; 17(1): 100, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30917829

RESUMO

BACKGROUND: Previous studies have identified IFNγ as an important early barrier to oncolytic viruses including vaccinia. The existing innate and adaptive immune barriers restricting oncolytic virotherapy, however, can be overcome using autologous or allogeneic mesenchymal stem cells as carrier cells with unique immunosuppressive properties. METHODS: To test the ability of mesenchymal stem cells to overcome innate and adaptive immune barriers and to successfully deliver oncolytic vaccinia virus to tumor cells, we performed flow cytometry and virus plaque assay analysis of ex vivo co-cultures of stem cells infected with vaccinia virus in the presence of peripheral blood mononuclear cells from healthy donors. Comparative analysis was performed to establish statistically significant correlations and to evaluate the effect of stem cells on the activity of key immune cell populations. RESULTS: Here, we demonstrate that adipose-derived stem cells (ADSCs) have the potential to eradicate resistant tumor cells through a combination of potent virus amplification and sensitization of the tumor cells to virus infection. Moreover, the ADSCs demonstrate ability to function as a virus-amplifying Trojan horse in the presence of both autologous and allogeneic human PBMCs, which can be linked to the intrinsic immunosuppressive properties of stem cells and their unique potential to overcome innate and adaptive immune barriers. The clinical application of ready-to-use ex vivo expanded allogeneic stem cell lines, however, appears significantly restricted by patient-specific allogeneic differences associated with the induction of potent anti-stem cell cytotoxic and IFNγ responses. These allogeneic responses originate from both innate (NK)- and adaptive (T)- immune cells and might compromise therapeutic efficacy through direct elimination of the stem cells or the induction of an anti-viral state, which can block the potential of the Trojan horse to amplify and deliver vaccinia virus to the tumor. CONCLUSIONS: Overall, our findings and data indicate the feasibility to establish simple and informative assays that capture critically important patient-specific differences in the immune responses to the virus and stem cells, which allows for proper patient-stem cell matching and enables the effective use of off-the-shelf allogeneic cell-based delivery platforms, thus providing a more practical and commercially viable alternative to the autologous stem cell approach.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Adultas/transplante , Células Alógenas/imunologia , Tolerância Imunológica , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos , Vaccinia virus/fisiologia , Células A549 , Imunidade Adaptativa/fisiologia , Tecido Adiposo/imunologia , Células-Tronco Adultas/imunologia , Células-Tronco Adultas/virologia , Células Alógenas/citologia , Animais , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Células Cultivadas , Chlorocebus aethiops , Humanos , Imunidade Inata/fisiologia , Imunomodulação/fisiologia , Imunoterapia Adotiva/métodos , Células K562 , Camundongos , Vírus Oncolíticos/imunologia , Transplante Homólogo/métodos , Vaccinia virus/imunologia
4.
J Transl Med ; 17(1): 271, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31426803

RESUMO

BACKGROUND: ACAM2000, a thymidine kinase (TK)-positive strain of vaccinia virus, is the current smallpox vaccine in the US. Preclinical testing demonstrated potent oncolytic activity of ACAM2000 against several tumor types. This Phase I clinical trial of ACAM2000 delivered by autologous adipose stromal vascular fraction (SVF) cells was conducted to determine the safety and feasibility of such a treatment in patients with advanced solid tumors or acute myeloid leukemia (AML). METHODS: Twenty-four patients with solid tumors and two patients with AML participated in this open-label, non-randomized dose-escalation trial. All patients were treated with SVF derived from autologous fat and incubated for 15 min to 1 h with ACAM2000 before application. Six patients received systemic intravenous application only, one patient received intra-tumoral application only, 15 patients received combination intravenous with intra-tumoral deployment, 3 patients received intravenous and intra-peritoneal injection and 1 patient received intravenous, intra-tumoral and intra-peritoneal injections. Safety at each dose level of ACAM2000 (1.4 × 106 plaque-forming units (PFU) to 1.8 × 107 PFU) was evaluated. Blood samples for PK assessments, flow cytometry and cytokine analysis were collected at baseline and 1 min, 1 h, 1 day, 1 week, 1 month, 3 months and 6 months following treatment. RESULTS: No serious toxicities (> grade 2) were reported. Seven patients reported an adverse event (AE) in this study: self-limiting skin rashes, lasting 7 to 18 days-an expected adverse reaction to ACAM2000. No AEs leading to study discontinuation were reported. Viral DNA was detected in all patients' blood samples immediately following treatment. Interestingly, in 8 patients viral DNA disappeared 1 day and re-appeared 1 week post treatment, suggesting active viral replication at tumor sites, and correlating with longer survival of these patients. No major increase in cytokine levels or correlation between cytokine levels and skin rashes was noted. We were able to assess some initial efficacy signals, especially when the ACAM2000/SVF treatment was combined with checkpoint inhibition. CONCLUSIONS: Treatment with ACAM2000/SVF in patients with advanced solid tumors or AML is safe and well tolerated, and several patients had signals of an anticancer effect. These promising initial clinical results merit further investigation of therapeutic utility. Trial registration Retrospectively registered (ISRCTN#10201650) on October 22, 2018.


Assuntos
Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/citologia , Vírus Oncolíticos/fisiologia , Timidina Quinase/metabolismo , Vaccinia virus/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , DNA Viral/sangue , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Terapia Viral Oncolítica/efeitos adversos , Células Estromais/metabolismo , Resultado do Tratamento , Adulto Jovem
6.
Cancer Cell ; 9(2): 109-20, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16473278

RESUMO

Mice deficient in the DNA damage sensor P53 display normal T cell development but eventually succumb to thymic lymphomas. Here, we show that inactivation of the TCR beta gene enhancer (E beta) results in a block of T cell development at stages where recombination-activating genes (RAG) are expressed. Introduction of the E beta mutation into p53-/- mice dramatically accelerates the onset of lethal thymic lymphomas that harbor RAG-dependent aberrant rearrangements, chromosome 14 and 12 translocations, and amplification of the chromosomal region 9A1-A5.3. Phenotypic and genetic analyses suggest that lymphomas emerge through a normal thymocyte development pathway. These findings provide genetic evidence that block of lymphocyte development at stages with RAG endonuclease activity can provoke lymphomagenesis on a background with deficient DNA damage responses.


Assuntos
Aberrações Cromossômicas , Proteínas de Ligação a DNA/metabolismo , Linfoma/genética , Linfoma/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína Supressora de Tumor p53/deficiência , Animais , Apoptose , Linhagem Celular Tumoral , Dano ao DNA , Proteínas de Ligação a DNA/genética , Rearranjo Gênico do Linfócito T/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Linfoma/imunologia , Linfoma/metabolismo , Camundongos , Camundongos Knockout , Deleção de Sequência/genética , Cariotipagem Espectral , Linfócitos T/citologia , Timo/citologia , Timo/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Cancers (Basel) ; 14(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36551636

RESUMO

We describe the repurposing and optimization of the TK-positive (thymidine kinase) vaccinia virus strain ACAM1000/ACAM2000™ as an oncolytic virus. This virus strain has been widely used as a smallpox vaccine and was also used safely in our recent clinical trial in patients with advanced solid tumors and Acute Myeloid Leukemia (AML). The vaccinia virus was amplified in CV1 cells and named CAL1. CAL1 induced remarkable oncolysis in various human and mouse cancer cells and preferentially amplified in cancer cells, supporting the use of this strain as an oncolytic virus. However, the therapeutic potential of CAL1, as demonstrated with other oncolytic viruses, is severely restricted by the patients' immune system. Thus, to develop a clinically relevant oncolytic virotherapy agent, we generated a new off-the-shelf therapeutic called Supernova1 (SNV1) by loading CAL1 virus into allogeneic adipose-derived mesenchymal stem cells (AD-MSC). Culturing the CAL1-infected stem cells allows the expression of virally encoded proteins and viral amplification prior to cryopreservation. We found that the CAL1 virus loaded into AD-MSC was resistant to humoral inactivation. Importantly, the virus-loaded stem cells (SNV1) released larger number of infectious viral particles and virally encoded proteins, leading to augmented therapeutic efficacy in vitro and in animal tumor models.

8.
NPJ Breast Cancer ; 7(1): 22, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654071

RESUMO

We show that treatment with the FDA-approved anti-parasitic drug ivermectin induces immunogenic cancer cell death (ICD) and robust T cell infiltration into breast tumors. As an allosteric modulator of the ATP/P2X4/P2X7 axis which operates in both cancer and immune cells, ivermectin also selectively targets immunosuppressive populations including myeloid cells and Tregs, resulting in enhanced Teff/Tregs ratio. While neither agent alone showed efficacy in vivo, combination therapy with ivermectin and checkpoint inhibitor anti-PD1 antibody achieved synergy in limiting tumor growth (p = 0.03) and promoted complete responses (p < 0.01), also leading to immunity against contralateral re-challenge with demonstrated anti-tumor immune responses. Going beyond primary tumors, this combination achieved significant reduction in relapse after neoadjuvant (p = 0.03) and adjuvant treatment (p < 0.001), and potential cures in metastatic disease (p < 0.001). Statistical modeling confirmed bona fide synergistic activity in both the adjuvant (p = 0.007) and metastatic settings (p < 0.001). Ivermectin has dual immunomodulatory and ICD-inducing effects in breast cancer, converting cold tumors hot, thus represents a rational mechanistic partner with checkpoint blockade.

9.
J Immunother Cancer ; 8(1)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32209603

RESUMO

Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.


Assuntos
Morte Celular Imunogênica/genética , Biologia Molecular/métodos , Consenso , Guias como Assunto , Humanos
10.
J Immunother Cancer ; 7(1): 131, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31113486

RESUMO

Tumor immunology has changed the landscape of cancer treatment. Yet, not all patients benefit as cancer immune responsiveness (CIR) remains a limitation in a considerable proportion of cases. The multifactorial determinants of CIR include the genetic makeup of the patient, the genomic instability central to cancer development, the evolutionary emergence of cancer phenotypes under the influence of immune editing, and external modifiers such as demographics, environment, treatment potency, co-morbidities and cancer-independent alterations including immune homeostasis and polymorphisms in the major and minor histocompatibility molecules, cytokines, and chemokines. Based on the premise that cancer is fundamentally a disorder of the genes arising within a cell biologic process, whose deviations from normality determine the rules of engagement with the host's response, the Society for Immunotherapy of Cancer (SITC) convened a task force of experts from various disciplines including, immunology, oncology, biophysics, structural biology, molecular and cellular biology, genetics, and bioinformatics to address the complexity of CIR from a holistic view. The task force was launched by a workshop held in San Francisco on May 14-15, 2018 aimed at two preeminent goals: 1) to identify the fundamental questions related to CIR and 2) to create an interactive community of experts that could guide scientific and research priorities by forming a logical progression supported by multiple perspectives to uncover mechanisms of CIR. This workshop was a first step toward a second meeting where the focus would be to address the actionability of some of the questions identified by working groups. In this event, five working groups aimed at defining a path to test hypotheses according to their relevance to human cancer and identifying experimental models closest to human biology, which include: 1) Germline-Genetic, 2) Somatic-Genetic and 3) Genomic-Transcriptional contributions to CIR, 4) Determinant(s) of Immunogenic Cell Death that modulate CIR, and 5) Experimental Models that best represent CIR and its conversion to an immune responsive state. This manuscript summarizes the contributions from each group and should be considered as a first milestone in the path toward a more contemporary understanding of CIR. We appreciate that this effort is far from comprehensive and that other relevant aspects related to CIR such as the microbiome, the individual's recombined T cell and B cell receptors, and the metabolic status of cancer and immune cells were not fully included. These and other important factors will be included in future activities of the taskforce. The taskforce will focus on prioritization and specific actionable approach to answer the identified questions and implementing the collaborations in the follow-up workshop, which will be held in Houston on September 4-5, 2019.


Assuntos
Imunoterapia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Comitês Consultivos , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Congressos como Assunto , Modelos Animais de Doenças , Humanos , Oncologia/organização & administração , Neoplasias/genética , Neoplasias/imunologia , Sociedades Médicas/organização & administração , Resultado do Tratamento , Microambiente Tumoral/genética
12.
Clin Transl Med ; 7(1): 5, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29417261

RESUMO

BACKGROUND: Stromal vascular fraction (SVF) represents an attractive source of adult stem cells and progenitors, holding great promise for numerous cell therapy approaches. In 2017, it was reported that 1524 patients received autologous SVF following the enzymatic digestion of liposuction fat. The treatment was safe and effective and patients showed significant clinical improvement. In a collaborative study, we analyzed SVF obtained from 58 patients having degenerative, inflammatory, autoimmune diseases, and advanced stage cancer. RESULTS: Flow analysis showed that freshly isolated SVF was very heterogeneous and harbored four major subsets specific to adipose tissue; CD34high CD45- CD31- CD146- adipose-derived stromal/stem cells (ADSCs), CD34low CD45+ CD206+CD31- CD146- hematopoietic stem cell-progenitors (HSC-progenitors), CD34high CD45- CD31+CD146+ adipose tissue-endothelial cells and CD45-CD34-CD31-CD146+ pericytes. Culturing and expanding of SVF revealed a homogenous population lacking hematopoietic lineage markers CD45 and CD34, but were positive for CD90, CD73, CD105, and CD44. Flow cytometry sorting of viable individual subpopulations revealed that ADSCs had the capacity to grow in adherent culture. The identity of the expanded cells as mesenchymal stem cells (MSCs) was further confirmed based on their differentiation into adipogenic and osteogenic lineages. To identify the potential factors, which may determine the beneficial outcome of treatment, we followed 44 patients post-SVF treatment. The gender, age, clinical condition, certain SVF-dose and route of injection, did not play a role on the clinical outcome. Interestingly, SVF yield seemed to be affected by patient's characteristic to various extents. Furthermore, the therapy with adipose-derived and expanded-mesenchymal stem cells (ADE-MSCs) on a limited number of patients, did not suggest increased efficacies compared to SVF treatment. Therefore, we tested the hypothesis that a certain combination, rather than individual subset of cells may play a role in determining the treatment efficacy and found that the combination of ADSCs to HSC-progenitor cells can be correlated with overall treatment efficacy. CONCLUSIONS: We found that a 2:1 ratio of ADSCs to HSC-progenitors seems to be the key for a successful cell therapy. These findings open the way to future rational design of new treatment regimens for individuals by adjusting the cell ratio before the treatment.

13.
Mol Cell Biol ; 24(16): 7015-23, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15282302

RESUMO

To investigate the role of promoters in regulating variable gene rearrangement and allelic exclusion, we constructed mutant mice in which a 1.2-kb region of the V beta 13 promoter was either deleted (P13(-/-)) or replaced with the simian virus 40 minimal promoter plus five copies of Gal4 DNA sequences (P13(R/R)). In P13(-/-) mice, cleavage, rearrangement, and transcription of V beta 13, but not the flanking V beta gene segments, were significantly inhibited. In P13(R/R) mice, inhibition of V beta 13 rearrangement was less severe and was not associated with any apparent reduction in V beta 13 cleavage. Expression of a T-cell receptor (TCR) transgene blocked cleavages at the normal V beta 13-recombination signal sequence junction and V beta 13 coding joint formation of both wild-type and mutant V beta 13 alleles. However, a low level of aberrant V beta 13 cleavage was consistently detected, especially in TCR transgenic P13(R/R) mice. These findings suggest that the variable gene promoter is required for promoting local recombination accessibility of the associated V beta gene segment. Although the promoter is dispensable for allelic exclusion, it appears to suppress aberrant V beta cleavages during allelic exclusion.


Assuntos
Alelos , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Regiões Promotoras Genéticas , Animais , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Mutação , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Recombinação Genética , Transcrição Gênica , Transgenes
14.
Sci Rep ; 5: 16222, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26552848

RESUMO

Overexpression of P2X7 receptors correlates with tumor growth and metastasis. Yet, release of ATP is associated with immunogenic cancer cell death as well as inflammatory responses caused by necrotic cell death at sites of trauma or ischemia-reperfusion injury. Using an FDA-approved anti-parasitic agent Ivermectin as a prototype agent to allosterically modulate P2X4 receptors, we can switch the balance between the dual pro-survival and cytotoxic functions of purinergic signaling in breast cancer cells. This is mediated through augmented opening of the P2X4/P2X7-gated Pannexin-1 channels that drives a mixed apoptotic and necrotic mode of cell death associated with activation of caspase-1 and is consistent with pyroptosis. We show that cancer cell death is dependent on ATP release and death signals downstream of P2X7 receptors that can be reversed by inhibition of NADPH oxidases-generated ROS, Ca(2+)/Calmodulin-dependent protein kinase II (CaMKII) or mitochondrial permeability transition pore (MPTP). Ivermectin induces autophagy and release of ATP and HMGB1, key mediators of inflammation. Potentiated P2X4/P2X7 signaling can be further linked to the ATP rich tumor microenvironment providing a mechanistic explanation for the tumor selectivity of purinergic receptors modulation and its potential to be used as a platform for integrated cancer immunotherapy.


Assuntos
Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Conexinas/metabolismo , Ivermectina/toxicidade , Proteínas do Tecido Nervoso/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Regulação Alostérica , Animais , Autofagia/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Caspase 1/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/genética , Transdução de Sinais/efeitos dos fármacos
15.
J Exp Med ; 207(10): 2195-206, 2010 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-20837698

RESUMO

The inhibitor of apoptosis proteins (IAPs) have recently been shown to modulate nuclear factor κB (NF-κB) signaling downstream of tumor necrosis factor (TNF) family receptors, positioning them as essential survival factors in several cancer cell lines, as indicated by the cytotoxic activity of several novel small molecule IAP antagonists. In addition to roles in cancer, increasing evidence suggests that IAPs have an important function in immunity; however, the impact of IAP antagonists on antitumor immune responses is unknown. In this study, we examine the consequences of IAP antagonism on T cell function in vitro and in the context of a tumor vaccine in vivo. We find that IAP antagonists can augment human and mouse T cell responses to physiologically relevant stimuli. The activity of IAP antagonists depends on the activation of NF-κB2 signaling, a mechanism paralleling that responsible for the cytotoxic activity in cancer cells. We further show that IAP antagonists can augment both prophylactic and therapeutic antitumor vaccines in vivo. These findings indicate an important role for the IAPs in regulating T cell-dependent responses and suggest that targeting IAPs using small molecule antagonists may be a strategy for developing novel immunomodulating therapies against cancer.


Assuntos
Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Neoplasias/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer , Humanos , Imunomodulação , Proteínas Inibidoras de Apoptose/imunologia , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , NF-kappa B/imunologia , NF-kappa B/metabolismo , Neoplasias/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
16.
Cancer Res ; 68(21): 8889-98, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18974133

RESUMO

The pathogenesis of malignant melanoma involves the interplay of tumor cells with normal host elements, but the underlying mechanisms are incompletely understood. Here, we show that milk fat globule EGF-8 (MFG-E8), a secreted protein expressed at high levels in the vertical growth phase of melanoma, promotes disease progression through coordinated alpha(v)beta(3) integrin signaling in the tumor microenvironment. In a murine model of melanoma, MFG-E8 enhanced tumorigenicity and metastatic capacity through Akt-dependent and Twist-dependent pathways. MFG-E8 augmented melanoma cell resistance to apoptosis, triggered an epithelial-to-mesenchymal transition (EMT), and stimulated invasion and immune suppression. In human melanoma cells, MFG-E8 knockdown attenuated Akt and Twist signaling and thereby compromised tumor cell survival, EMT, and invasive ability. MFG-E8-deficient human melanoma cells also showed increased sensitivity to small molecule inhibitors of insulin-like growth factor I receptor and c-Met. Together, these findings delineate pleiotropic roles for MFG-E8 in the tumor microenvironment and raise the possibility that systemic MFG-E8 blockade might prove therapeutic for melanoma patients.


Assuntos
Antígenos de Superfície/fisiologia , Melanoma/patologia , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Proteína 1 Relacionada a Twist/metabolismo , Animais , Apoptose , Sequência de Bases , Primers do DNA , Progressão da Doença , Humanos , Melanoma/enzimologia , Melanoma/metabolismo , Camundongos , Microscopia de Fluorescência , Proteínas do Leite , Invasividade Neoplásica
17.
Proc Natl Acad Sci U S A ; 100(23): 13465-70, 2003 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-14593206

RESUMO

The precise function of cis elements in regulating V(D)J recombination is still controversial. Here, we determined the effect of inactivation of the TCRbeta enhancer (Ebeta) on cleavage and rearrangement of Dbeta1, Dbeta2, Jbeta1, and Jbeta2 gene segments in CD4-CD8- [double-negative (DN)] and CD4+CD8+ [double-positive (DP)] thymocytes. In Ebeta-deficient mice, (i) Dbeta1 rearrangements were more severely impaired than Dbeta2 rearrangements; (ii) most of the Dbeta and Jbeta cleavages and rearrangements occurred in DP, rather than in DN, thymocytes; and (iii) most of the 3' Dbeta1 cleavages were coupled to 5' Dbeta2 cleavages instead of to Jbeta cleavages, resulting in nonstandard Dbeta1-Dbeta2-Jbeta2 joints. These findings suggest that the Ebeta regulates TCRbeta rearrangement by promoting accessibility of Dbeta and Jbeta gene segments in DN thymocytes and proper pairing between Dbeta1 and Jbeta gene segments for cleavage and joining in DP thymocytes.


Assuntos
Elementos Facilitadores Genéticos , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Recombinação Genética , VDJ Recombinases/genética , Animais , Sequência de Bases , Southern Blotting , Antígenos CD4/biossíntese , Antígenos CD8/biossíntese , Rearranjo Gênico , Vetores Genéticos , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Reação em Cadeia da Polimerase , Timo/citologia , Timo/metabolismo , VDJ Recombinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA