Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Regul Toxicol Pharmacol ; 65(1): 38-46, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23044254

RESUMO

Cardiovascular (CV) safety concerns are a significant source of drug development attrition in the pharmaceutical industry today. Though current nonclinical testing paradigms have largely prevented catastrophic CV events in Phase I studies, many challenges relating to the inability of current nonclinical safety testing strategies to model patient outcomes persist. Contemporary approaches include a spectrum of evaluations of CV structure and function in a variety of laboratory animal species. These approaches might be improved with a more holistic integration of these evaluations in repeat-dose studies, addition of novel endpoints with greater sensitivity and translational application, and use of more relevant animal models. Particular opportunities present with advances in imaging capabilities applicable to rodent and non-rodent species, technical capabilities for measuring CV function in repeat-dose animal studies, detection and quantitation of microRNAs and wider use of alternative animal models. Strategic application of these novel opportunities considering putative CV risk associated with the molecular drug target as well as inherent risks present in the target patient population could tailor or 'personalize' nonclinical safety assessment as a more translational evaluation. This paper is a call to action for the clinical and nonclinical drug safety communities to assess these opportunities to determine their utility in filling potential gaps in our current cardiovascular safety testing paradigms.


Assuntos
Doenças Cardiovasculares/induzido quimicamente , Desenho de Fármacos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Modelos Animais de Doenças , Indústria Farmacêutica/métodos , Determinação de Ponto Final , Humanos , MicroRNAs/metabolismo , Projetos de Pesquisa , Medição de Risco/métodos , Especificidade da Espécie
2.
Toxicol Appl Pharmacol ; 258(2): 226-36, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22115978

RESUMO

Titanium dioxide nanoparticles (nano-TiO(2)) catalyze reactions under UV radiation and are hypothesized to cause phototoxicity. A human-derived line of retinal pigment epithelial cells (ARPE-19) was treated with six samples of nano-TiO(2) and exposed to UVA radiation. The TiO(2) nanoparticles were independently characterized to have mean primary particle sizes and crystal structures of 22nm anatase/rutile, 25nm anatase, 31nm anatase/rutile, 59nm anatase/rutile, 142nm anatase, and 214nm rutile. Particles were suspended in cell culture media, sonicated, and assessed for stability and aggregation by dynamic light scattering. Cells were treated with 0, 0.3, 1, 3, 10, 30, or 100µg/ml nano-TiO(2) in media for 24hrs and then exposed to UVA (2hrs, 7.53J/cm(2)) or kept in the dark. Viability was assessed 24hrs after the end of UVA exposure by microscopy with a live/dead assay (calcein-AM/propidium iodide). Exposure to higher concentrations of nano-TiO(2) with UVA lowered cell viability. The 25nm anatase and 31nm anatase/rutile were the most phototoxic (LC(50) with UVA<5µg/ml), while the 142nm anatase and 214nm rutile were the least phototoxic. An acellular assay ranked TiO(2) nanoparticles for their UVA photocatalytic reactivities. The particles were found to be capable of generating thiobarbituric acid reactive substances (TBARS) under UVA. Flow cytometry showed that nano-TiO(2) combined with UVA decreased cell viability and increased the generation of reactive oxygen species (ROS, measured by Mitosox). LC(50) values under UVA were correlated with TBARS reactivity, particle size, and surface area.


Assuntos
Nanopartículas Metálicas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Titânio/toxicidade , Raios Ultravioleta/efeitos adversos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Concentração Inibidora 50 , Dose Letal Mediana , Luz , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Tamanho da Partícula , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos da radiação , Espalhamento de Radiação , Titânio/administração & dosagem , Titânio/química
3.
Crit Rev Toxicol ; 41(3): 213-29, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21244219

RESUMO

Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coatings, electronics, biomedical, energy and fuel additives. Many applications of engineered CeO(2) nanoparticles are dispersive in nature increasing the risk of exposure and interactions with a variety of environmental media with unknown health, safety and environmental implications. As evident from a risk assessment perspective, the health effects of CeO(2) nanoparticles are not only dependent on their intrinsic toxicity but also on the level of exposure to these novel materials. Although this may seem logical, numerous studies have assessed the health effects of nanoparticles without this simple but critical risk assessment perspective. This review extends previous exposure and toxicological assessments for CeO(2) particles by summarizing the current state of micro and nano-scale cerium exposure and health risks derived from epidemiology, air quality monitoring, fuel combustion and toxicological studies to serve as a contemporary comprehensive and integrated toxicological assessment. Based on the new information presented in this review there is an ongoing exposure to a large population to new diesel emissions generated using fuel additives containing CeO2 nanoparticles for which the environmental (air quality and climate change) and public health impacts of this new technology are not known. Therefore, there is an absolute critical need for integrated exposure and toxicological studies in order to accurately assess the environmental, ecological and health implications of nanotechnology enabled diesel fuel additives with existing as well as new engine designs and fuel formulations.


Assuntos
Poluentes Atmosféricos/toxicidade , Cério/toxicidade , Nanopartículas Metálicas/toxicidade , Poluentes Atmosféricos/química , Cério/química , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Gasolina/toxicidade , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Medição de Risco , Emissões de Veículos/toxicidade
4.
Inhal Toxicol ; 21(5): 394-403, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19496694

RESUMO

Epidemiology studies have reported associations between increased mortality and morbidity with exposure to particulate air pollution, particularly within individuals with preexisting cardiovascular disease (CVD). Clinical and toxicological studies have provided evidence that exposure to ambient air particulate matter (PM) impacts CVD by increasing plaque size. It is unclear whether PM-induced increased plaque size is associated with molecular disease progression. This study examines molecular profiles within plaques recovered from ApoE(-/-) mice exposed to concentrated ambient air particles (CAPs) to determine whether pulmonary deposition of PM contributes to molecular alterations leading to vascular disease progression. Laser capture microdissection was used to recover atherosclerotic plaques from ApoE(-/-) male mice exposed daily for 5 mo to filtered air or CAPs. Alterations in mRNA expression was assessed in microdissected plaques of CAPs-exposed and air controls using the Affymetrix microarray platform. Bioinformatic analysis indicated alterations in 611 genes: 395 genes downregulated and 216 genes upregulated. Gene ontology revealed CAPs-induced changes to inflammation, proliferation, cell cycle, hematological system, and cardiovascular pathways. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) verified microarray data also revealing gene expression alterations undetected by the microarray analysis, i.e., decreased expression of alpha-actin for smooth muscle cells, and increased expression of the macrophage marker Cd68 and of beta-actin. Comparison of CAPs-induced gene expression profiles demonstrated consistency with previously published gene expression profiles in the ApoE(-/-) mouse model and humans associated with plaque progression. These results indicate that exposure to fine PM induces molecular alterations associated with vascular disease progression and provides insight into potential biological pathways responsible for this effect.


Assuntos
Aterosclerose/etiologia , Aterosclerose/patologia , Modelos Animais de Doenças , Predisposição Genética para Doença , Exposição por Inalação/efeitos adversos , Material Particulado/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Animais , Aorta/patologia , Aterosclerose/genética , Progressão da Doença , Masculino , Camundongos , Camundongos Knockout , Tamanho da Partícula
5.
Environ Health Perspect ; 115(11): 1654-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18007999

RESUMO

In this report we present the findings from a nanotoxicology workshop held 6-7 April 2006 at the Woodrow Wilson International Center for Scholars in Washington, DC. Over 2 days, 26 scientists from government, academia, industry, and nonprofit organizations addressed two specific questions: what information is needed to understand the human health impact of engineered nanoparticles and how is this information best obtained? To assess hazards of nanoparticles in the near-term, most participants noted the need to use existing in vivo toxicologic tests because of their greater familiarity and interpretability. For all types of toxicology tests, the best measures of nanoparticle dose need to be determined. Most participants agreed that a standard set of nanoparticles should be validated by laboratories worldwide and made available for benchmarking tests of other newly created nanoparticles. The group concluded that a battery of tests should be developed to uncover particularly hazardous properties. Given the large number of diverse materials, most participants favored a tiered approach. Over the long term, research aimed at developing a mechanistic understanding of the numerous characteristics that influence nanoparticle toxicity was deemed essential. Predicting the potential toxicity of emerging nanoparticles will require hypothesis-driven research that elucidates how physicochemical parameters influence toxic effects on biological systems. Research needs should be determined in the context of the current availability of testing methods for nanoscale particles. Finally, the group identified general policy and strategic opportunities to accelerate the development and implementation of testing protocols and ensure that the information generated is translated effectively for all stakeholders.


Assuntos
Substâncias Perigosas/análise , Substâncias Perigosas/toxicidade , Nanopartículas/análise , Nanopartículas/toxicidade , Nanotecnologia/métodos , Medição de Risco/métodos , Toxicologia/métodos , Engenharia Genética/métodos , Humanos , Saúde Pública
6.
J Toxicol Environ Health A ; 70(21): 1824-37, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17934955

RESUMO

Epidemiological studies have shown a positive association between exposure to air particulate matter (PM) pollution and adverse cardiovascular health effects in susceptible subpopulations such as those with pre-existing cardiovascular disease. The mechanism(s) through which pulmonary deposited PM, particularly fine PM2.5, PM with mass median aerodynamic diameter <2.5 microm, affects the cardiovascular system is currently not known and remains a major focus of investigation. In the present study, the transcriptosome and transcription factor proteome were examined in rat neonatal cardiomyocyte (RCM) cultures, following an acute exposure to bioavailable constituents of PM2.5 oil combustion particles designated residual oil fly ash leachate (ROFA-L). Out of 3924 genes examined, 38 genes were suppressed and 44 genes were induced following a 1-h exposure to 3.5 microg/ml of a particle-free leachate of ROFA (ROFA-L). Genomic alterations in pathways related to IGF-1, VEGF, IL-2, PI3/AKT, cardiovascular disease, and free radical scavenging, among others, were detected 1 h postexposure to ROFA-L. Global gene expression was altered in a manner consistent with cardiac myocyte electrophysiological remodeling, cellular oxidative stress, and apoptosis. ROFA-L altered the transcription factor proteome by suppressing activity of 24 and activating 40 transcription factors out of a total of 149. Genomic alterations were found to correlate with changes in transcription factor proteome. These acute changes indicate pathological molecular alterations, which may lead to possible chronic alterations to the cardiac myocyte. These data also potentially relate underlying cardiovascular effects from occupational exposure to ROFA and identify how particles from specific emission sources may mediate ambient PM cardiac effects.


Assuntos
Carbono/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Animais , Sobrevivência Celular , Células Cultivadas , Cinza de Carvão , Biologia Molecular , Miócitos Cardíacos/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley
7.
J Toxicol Environ Health A ; 70(22): 1929-35, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17966064

RESUMO

Exposure to air particulate matter (PM) may be associated with increased morbidity and mortality. An improved understanding of the mechanism(s) by which PM induces adverse effects is needed. This preliminary study examined the ability to use unique bioluminescent technologies to identify acute localized areas of residual oil fly ash (ROFA)-induced, oxidative lung injury. Transgenic mice, in which luciferase (luc) expression was regulated by the heme oxygenase (HO)-1 promoter, were exposed by pharyngeal aspiration to either saline or 50 microg ROFA/mouse. HO-1-luc expression was determined at 2, 6, 12, and 24 h postexposure using luminescent quantification and Western blot analysis of lung protein extracts, as well as with a novel in situ pulmonary bioluminescence imaging approach. The different approaches for the detection of luciferase in lung protein extracts recovered from ROFA exposed HO-1-luc transgenic mice gave variable results. Pulmonary homogenate HO-1-luc levels were increased at 2 h and 24 h postexposure to ROFA when examined by chemilumescent and Western blot analyses, respectively. In situ bioluminescent imaging of pulmonary tissue sections detected ROFA-induced pulmonary luciferase expression by identifying highly localized increases in HO-1-luc expression at 12 h and 24 h postexposure. These results suggest that the variability observed in the methods of detection for luciferase may be due to a localization of cells expressing luciferase within tissue samples, demonstrating that the HO-1-luc transgenic mouse model is the preferred method to detect and pinpoint in vivo particle-induced, oxidative lung injury. The feasibility of using this in situ approach is a unique proof-of-concept application for the identification of localized sites of oxidative injury induced by environmental pollutants.


Assuntos
Poluentes Atmosféricos/toxicidade , Carbono/toxicidade , Heme Oxigenase-1/metabolismo , Luciferases/metabolismo , Pulmão/metabolismo , Proteínas de Membrana/metabolismo , Estresse Oxidativo , Material Particulado/toxicidade , Poluição do Ar/efeitos adversos , Animais , Cinza de Carvão , Heme Oxigenase-1/genética , Luciferases/genética , Luminescência , Pulmão/efeitos dos fármacos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Modelos Animais , Centrais Elétricas
8.
Toxicol Sci ; 90(2): 385-91, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16407093

RESUMO

Particulate matter with mean aerodynamic diameter < or =2.5 microm (PM(2.5)), from diesel exhaust, coal or residual oil burning, and from industrial plants, is a significant component of airborne pollution. Type 2 diabetes is associated with enhanced risk of adverse cardiovascular events following exposure to PM(2.5). Particle properties, sources, and pathophysiological mechanisms responsible are unknown. We studied effects of residual oil fly ash (ROFA) from a large U.S. powerplant on vascular function in a prediabetic, hyperinsulinemic model, the JCR:LA-cp rat. Residual oil fly ash leachate (ROFA-L) was studied using aortic rings from young-adult, obese, insulin-resistant rats and lean normal rats in vitro. Contractile response to phenylephrine and relaxant response to acetylcholine were determined in the presence and absence of L-NAME (N(G)-nitro-L-arginine methyl ester). In a separate series of studies, the direct contractile effects of ROFA-L on repeated exposure were determined. ROFA-L (12.5 microg ml(-1)) increased phenylephrine-mediated contraction in obese (p < 0.05), but not in lean rat aortae, with the effect being exacerbated by L-NAME, and it reduced acetylcholine-mediated relaxation of both obese and lean aortae (p < 0.0001). Initial exposure of aortae to ROFA-L caused a small contractile response (<0.05 g), which was markedly greater on second exposure in the obese (approximately 0.6 g, p < 0.0001) aortae but marginal in lean (approximately 0.1 g) aortae. Our data demonstrate that bioavailable constituents of oil combustion particles enhance noradrenergic-mediated vascular contraction, impair endothelium-mediated relaxation, and induce direct vasocontraction in prediabetic rats. These observations provide the first direct evidence of the causal properties of PM(2.5) and identify the pathophysiological role of the early prediabetic state in susceptibility to environmentally induced cardiovascular disease. These are important implications for public health and public policy.


Assuntos
Poluentes Atmosféricos/toxicidade , Aorta Torácica/efeitos dos fármacos , Carbono/toxicidade , Animais , Aorta Torácica/fisiologia , Aterosclerose , Cinza de Carvão , Diabetes Mellitus Tipo 2 , Técnicas In Vitro , Resistência à Insulina , Masculino , Material Particulado , Fenilefrina/farmacologia , Ratos , Ratos Endogâmicos , Vasoconstrição/efeitos dos fármacos
9.
Toxicol Sci ; 91(1): 237-46, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16449252

RESUMO

Controversy persists regarding the validity of intratracheal instillation (IT) of particulate matter (PM) as a surrogate for inhalation exposure (IH) in rodents. Concerns center on dose, dose-rate, and distribution of material within the lung. Acute toxicity of a residual oil fly ash (ROFA) administered by IH was compared to those effects of a single IT bolus at an IH-equivalent dose. Male Sprague Dawley rats (60 days old) were exposed by nose-only IH to approximately 12 mg/m3 for 6 h. Inter-lobar dose distribution of ROFA, dissected immediately post exposure, was assayed by neutron activation. Vanadium and nickel were used as ROFA markers. IT administration of the IH-equivalent dose (110 microg) showed similar (<15%) interlobular distribution, with the exception of the inferior lobe dose (IT>IH approximately 25%). Evaluation of airway hyperreactivity (AHR), bronchoalveolar lavage fluid (BALF) constituents, and histopathology was conducted at 24, 48, and 96 h post exposure. AHR in the IH group was minimally (p > 0.05) affected by treatment, but was significantly increased ( approximately 40%) at both 24 and 48 h post IT. Inflammation in both groups, as measured by alterations in BALF protein, lactate dehydrogenase and neutrophils, was virtually identical at all time points. Alveolitis and bronchial inflammation/epithelial hypertrophy were prominent 24 h following IT, but not apparent after IH. Conversely, alveolar hemorrhage, congestion, and airway exudate were pronounced at 48 h post-IH but not remarkable in the IT group. Thus, IT-ROFA mimicked IH in terms of lobar distribution and injury biomarkers over 96 h, while morphological alterations and AHR appeared to be more dependent on the method of administration.


Assuntos
Pulmão/efeitos dos fármacos , Óleos/toxicidade , Animais , Líquido da Lavagem Broncoalveolar , Exposição por Inalação , Pulmão/patologia , Masculino , Óleos/administração & dosagem , Ratos , Ratos Sprague-Dawley
10.
Nanotoxicology ; 10(5): 619-28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26593696

RESUMO

Nanoparticles (NPs) may translocate to the brain following inhalation or oral exposures, yet higher throughput methods to screen NPs for potential neurotoxicity are lacking. The present study examined effects of 5 CeO2 (5- 1288 nm), and 4 TiO2 (6-142 nm) NPs and microparticles (MP) on network function in primary cultures of rat cortex on 12 well microelectrode array (MEA) plates. Particles were without cytotoxicity at concentrations ≤50 µg/ml. After recording 1 h of baseline activity prior to particle (3-50 µg/ml) exposure, changes in the total number of spikes (TS) and # of active electrodes (#AEs) were assessed 1, 24, and 48 h later. Following the 48 h recording, the response to a challenge with the GABAA antagonist bicuculline (BIC; 25 µM) was assessed. In all, particles effects were subtle, but 69 nm CeO2 and 25 nm TiO2 NPs caused concentration-related decreases in TS following 1 h exposure. At 48 h, 5 and 69 nm CeO2 and 25 and 31 nm TiO2 decreased #AE, while the two MPs increased #AEs. Following BIC, only 31 nm TiO2 produced concentration-related decreases in #AEs, while 1288 nm CeO2 caused concentration-related increases in both TS and #AE. The results indicate that some metal oxide particles cause subtle concentration-related changes in spontaneous and/or GABAA receptor-mediated neuronal activity in vitro at times when cytotoxicity is absent, and that MEAs can be used to screen and prioritize nanoparticles for neurotoxicity hazard.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Cério/toxicidade , Nanopartículas/toxicidade , Rede Nervosa/efeitos dos fármacos , Titânio/toxicidade , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Microeletrodos , Tamanho da Partícula , Cultura Primária de Células , Ratos , Ratos Long-Evans , Propriedades de Superfície
11.
Toxicology ; 355-356: 1-8, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27179409

RESUMO

Silver nanoparticles (AgNPs) are used in a wide range of consumer and medical products because of their antimicrobial and antifungal properties, and can translocate to the brain following exposure. Therefore, to screen AgNPs for potential impacts on human health, it is essential to examine neural function. The present study examined AgNPs (3 citrate coated, 3 PVP coated; 10-75nm) and AgNO3 effects on spontaneous and pharmacologically-induced neural network function in rat primary cortical cells on multi-well microelectrode array (mwMEA) plates. Baseline activity (1h) was recorded prior to exposure to non-cytotoxic concentrations of AgNPs and AgNO3 (0.08-0.63 and 0.08-1.7µg/ml, respectively). Changes in number of total extracellularly-recorded action potential spikes (total spikes; TS) and active electrodes (AE), relative to controls, were assessed 1, 24, and 48h after exposure to AgNP suspensions or AgNO3. After the 48h recording, the response to a pharmacological challenge with the GABAA antagonist, bicuculline (BIC), was assessed. Only two particles altered neural network function. Citrate coated 10nm AgNP caused concentration-related increases in AEs at 24h. After BIC treatment, PVP coated 75nm AgNP caused concentration-dependent increases in AE. AgNO3 effects differed from AgNPs, causing a concentration-related decrease in AEs at 24 and 48h, and a concentration-related decrease in TS following BIC challenge. Importantly, the direction of AgNO3 effects on neural activity was opposite those of 10nm Ag citrate at concentrations up to 0.63µg/ml, and different from 75nm Ag PVP, indicating ionic silver does not mediate these effects. These results demonstrate that non-cytotoxic concentrations of 10nm citrate- and 75nm PVP-coated Ag NPs alter neural network function in vitro, and should be considered for additional neurotoxicity hazard characterization.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Rede Nervosa/efeitos dos fármacos , Nitrato de Prata/toxicidade , Prata/toxicidade , Animais , Bicuculina/farmacologia , Citratos/química , Relação Dose-Resposta a Droga , Nanopartículas Metálicas/administração & dosagem , Tamanho da Partícula , Povidona/química , Ratos , Prata/administração & dosagem , Nitrato de Prata/administração & dosagem , Fatores de Tempo
12.
J Toxicol Environ Health A ; 67(11): 851-61, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15205040

RESUMO

Understanding the mechanisms by which various types of air pollution particles (particulate matter, PM) mediate adverse health effects would provide biological plausibility to epidemiological associations of increased rates of morbidity and mortality. The majority of information regarding the means by which PM generates lung injury has been derived from in vitro studies. However, it is unclear as to what extent these mechanisms can be extrapolated to the in vivo situation. Current methods to assess mechanisms of PM-induced lung injury make it difficult to obtain site-specific, sensitive, and comprehensive determinations of cellular and molecular pathology associated with PM-induced injury. In the present study, the ability of laser capture microdissection (LCM) and protein microarray technologies were assessed to examine the effect of residual oil fly ash (ROFA) exposure on airway intracellular signaling pathways and transcription factor activation. Sprague-Dawley rats were intratracheally instilled with 0.5 mg/rat of ROFA. LCM was used to recover airway cells and protein extracts derived from the microdissected airways were analyzed by protein microarray. ROFA exposure increased p-ERK:ERK and p-I kappa B:I kappa B, suggesting changes in cell growth, transformation, and inflammation within the airway. These results are consistent with previously reported in vitro findings, demonstrating for the first time the credibility of applying LCM and protein microarray technologies to assess acute lung injury induced by environmental air pollutants.


Assuntos
Poluentes Atmosféricos/toxicidade , Carbono/toxicidade , Citocinas/biossíntese , Exposição por Inalação , Pneumopatias/patologia , Microdissecção/métodos , Análise Serial de Proteínas/métodos , Animais , Cinza de Carvão , Pneumopatias/induzido quimicamente , Masculino , Material Particulado , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Sistema Respiratório/lesões
13.
Cardiovasc Toxicol ; 13(4): 426-37, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24048980

RESUMO

Epidemiological studies have associated air pollution particulate matter (PM) exposure with adverse cardiovascular effects. Identification of causal PM sources is critically needed to support regulatory decisions to protect public health. This research examines the in vitro cardiotoxicity of bioavailable constituents of residual oil fly ash (ROFA) employing in vivo, biokinetically-based, concentrations determined from their pulmonary deposition. Pulmonary deposition of ROFA led to a rapid increase in plasma vanadium (V) levels that were prolonged in hypertensive animals without systemic inflammation. ROFA cardiotoxicity was evaluated using neonatal rat cardiomyocyte (RCM) cultures exposed to particle-free leachates of ROFA (ROFA-L) at levels present in exposed rat plasma. Cardiotoxicity was observed at low levels (3.13 µg/mL) of ROFA-L 24 h post-exposure. Dimethylthiourea (28 mM) inhibited ROFA-L-induced cytotoxicity at high (25-12.5 µg/mL) doses, suggesting that oxidative stress is responsible at high ROFA-L doses. Cardiotoxicity could not be reproduced using a V + Ni + Fe mixture or a ROFA-L depleted of these metals, suggesting that ROFA-L cardiotoxicity requires the full complement of bioavailable constituents. Susceptibility of RCMs to ROFA-L-induced cytotoxicity was increased following tyrosine phosphorylation inhibition, suggesting that phosphotyrosine signaling pathways play a critical role in regulating ROFA-L-induced cardiotoxicity. These data demonstrate that bioavailable constituents of ROFA are capable of direct adverse cardiac effects.


Assuntos
Cardiotoxinas/toxicidade , Cinza de Carvão/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Células Cultivadas , Relação Dose-Resposta a Droga , Masculino , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley
14.
ACS Nano ; 7(3): 1929-42, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23387956

RESUMO

The widespread use of titanium dioxide (TiO2) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and chromosome damage (micronucleus assay, MN) in vitro, no study has systematically assessed the influence of medium composition on the physicochemical characteristics and genotoxicity of TiO2 nanoparticles. We assessed TiO2 nanoparticle agglomeration, cellular interaction, induction of genotoxicity, and influence on cell cycle in human lung epithelial cells using three different nanoparticle-treatment media: keratinocyte growth medium (KGM) plus 0.1% bovine serum albumin (KB); a synthetic broncheoalveolar lavage fluid containing PBS, 0.6% bovine serum albumin and 0.001% surfactant (DM); or KGM with 10% fetal bovine serum (KF). The comet assay showed that TiO2 nanoparticles induced similar amounts of DNA damage in all three media, independent of the amount of agglomeration, cellular interaction, or cell-cycle changes measured by flow cytometry. In contrast, TiO2 nanoparticles induced MN only in KF, which is the medium that facilitated the lowest amount of agglomeration, the greatest amount of nanoparticle cellular interaction, and the highest population of cells accumulating in S phase. These results with TiO2 nanoparticles in KF demonstrate an association between medium composition, particle uptake, and nanoparticle interaction with cells, leading to chromosomal damage as measured by the MN assay.


Assuntos
Aberrações Cromossômicas , Dano ao DNA , Nanopartículas Metálicas/toxicidade , Mutagênicos/toxicidade , Titânio/toxicidade , Animais , Bovinos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Meios de Cultura/química , Humanos , Nanopartículas Metálicas/ultraestrutura , Testes para Micronúcleos , Soroalbumina Bovina
15.
J Pharmacol Toxicol Methods ; 68(1): 7-12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23567075

RESUMO

INTRODUCTION: The evaluation of cardiovascular side-effects is a critical element in the development of all new drugs and chemicals. Cardiac safety issues are a major cause of attrition and withdrawal due to adverse drug reactions (ADRs) in pharmaceutical drug development. METHODS: The evolution of the HESI Technical Committee on Cardiac Safety from 2000-2013 is presented as an example of an effective international consortium of academic, government, and industry scientists working to improve cardiac safety. RESULTS AND DISCUSSION: The HESI Technical Committee Working Groups facilitated the development of a variety of platforms for resource sharing and communication among experts that led to innovative strategies for improved drug safety. The positive impacts arising from these Working Groups are described in this article.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Desenho de Fármacos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Comitês Consultivos , Animais , Doenças Cardiovasculares/induzido quimicamente , Comunicação , Humanos , Cooperação Internacional
17.
Inhal Toxicol ; 15(13): 1327-46, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14569496

RESUMO

Insight into the mechanism(s) by which ambient air particulate matter (PM) mediates adverse health effects is needed to provide biological plausibility to epidemiological studies demonstrating associations between PM exposure and increased morbidity and mortality. Although in vitro PM studies provide an understanding of mechanisms by which PM affects pulmonary cells, it is difficult to extrapolate from in vitro to in vivo mechanisms of PM-induced lung injury. We examined in vivo mechanisms of lung injury generated by oil combustion particles. Rats were pretreated with dimethylthiourea (DMTU) before intratracheal instillation of residual oil fly ash (ROFA). Animals were examined by bronchoalveolar lavage for biomarkers of lung injury, and lung tissues were examined by immunohistochemical, biochemical, and molecular approaches to identify ROFA-induced alterations in intracellular signaling pathways and proinflammatory gene expression. Significant increases in pulmonary inflammation, cytotoxicity, activation of ERK mitogen-activated protein kinase (MAPK), and increases in mRNA levels encoding macrophage inflammatory protein (MIP)-2, interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, MCP-1 and matrilysin were observed. DMTU pretreatment inhibited ROFA-induced pulmonary inflammation, cytotoxicity, ERK MAPK activation, and cytokine gene expression. Our findings provide coherence with in vitro PM mechanistic information, allow direct in vitro to in vivo extrapolation, and demonstrate a critical role for oxidative stress in ROFA-induced lung injury and associated molecular pathology.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Citocinas/biossíntese , Sequestradores de Radicais Livres/farmacologia , Pulmão/patologia , Estresse Oxidativo , Tioureia/análogos & derivados , Tioureia/farmacologia , Animais , Lavagem Broncoalveolar , Sequestradores de Radicais Livres/administração & dosagem , Regulação da Expressão Gênica , Imuno-Histoquímica , Incineração , Inflamação , Masculino , Tamanho da Partícula , Petróleo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Tioureia/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA