Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Ann Bot ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733329

RESUMO

BACKGROUND AND AIMS: The California Floristic Province (CA-FP) is the most species-rich region of North America north of Mexico. One of several proposed hypotheses explaining the exceptionally diversity of the region is that the CA-FP harbors myriad recently diverged lineages with nascent reproductive barriers. Salvia subgenus Audibertia is a conspicuous element of the CA-FP, with multiple sympatric and compatible species. METHODS: Using 305 nuclear loci and both organellar genomes, we reconstruct species trees, examine genomic discordance, conduct divergence-time estimation, and analyze contemporaneous patterns of gene flow and mechanical reproductive isolation. KEY RESULTS: Despite strong genomic discordance, an underlying bifurcating tree is supported. Organellar genomes capture additional introgression events not detected in the nuclear genome. Most interfertility is found within clades, indicating that reproductive barriers are coincident with genetic divergence. Species are generally not mechanically isolated, suggesting that it is unlikely to be the primary factor leading to reproductive isolation. CONCLUSIONS: Rapid, recent speciation with some interspecific gene flow in conjunction with the onset of a Mediterranean-like climate is the underlying cause of extant diversity in Salvia subgenus Audibertia. Speciation has largely not been facilitated by gene flow. Its signal in the nuclear genome seems to mostly be erased by backcrossing, but organellar genomes each capture different instances of historical gene flow, likely characteristic of many CA-FP lineages. Mechanical reproductive isolation appears to be only part of a mosaic of factors limiting gene flow.

2.
Mol Phylogenet Evol ; 187: 107873, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429334

RESUMO

Biogeographic disjunctions, including intercontinental disjunctions, are frequent across plant lineages and have been of considerable interest to biologists for centuries. Their study has been reinvigorated by molecular dating and associated comparative methods. One of the "classic" disjunction patterns is that between Eastern Asia and North America. It has been speculated that this pattern is the result of vicariance following the sundering of a widespread Acrto-Teritary flora. Subtribe Nepetinae in the mint family (Lamiaceae) is noteworthy because it contains three genera with this disjunction pattern: Agastache, Dracocephalum, and Meehania. These disjunctions are ostensibly the result of three separate events, allowing for concurrent testing of the tempo, origin, and type of each biogeographic event. Using four plastid and four nuclear markers, we estimated divergence times and analyzed the historical biogeography of Nepetinae, including comprehensive sampling of all major clades for the first time. We recover a well-supported and largely congruent phylogeny of Nepetinae between genomic compartments, although several cases of cyto-nuclear discordance are evident. We demonstrate that the three disjunctions are pseudo-congruent, with unidirectional movement from East Asia at slightly staggered times during the late Miocene and early Pliocene. With the possible exception of Meehania, we find that vicariance is likely the underlying driver of these disjunctions. The biogeographic history of Meehania in North America may be best explained by long-distance dispersal, but a more complete picture awaits deeper sampling of the nuclear genome and more advanced biogeographical models.


Assuntos
Lamiaceae , Humanos , Ásia Oriental , População do Leste Asiático , Lamiaceae/genética , América do Norte , Filogenia , Filogeografia , Genes de Plantas
3.
Cladistics ; 38(4): 429-451, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35358338

RESUMO

The northern temperate genus Dracocephalum consists of approximately 70 species mainly distributed in the steppe-desert biomes of Central and West Asia and the alpine region of the Qinghai-Tibetan Plateau (QTP). Previous work has shown that Dracocephalum is not monophyletic and might include Hyssopus and Lallemantia. This study attempts to clarify the phylogenetic relationships, diversification patterns, and the biogeographical history of the three genera (defined as Dracocephalum s.l.). Based on a sampling of 66 taxa comprising more than 80% from extant species of Dracocephalum s.l., morphological, phylogenetic (maximum parsimony, likelihood, and Bayesian inference based on nuclear ITS and ETS, plastid rpl32-trnL, trnL-trnF, ycf1, and ycf1-rps15, and two low-copy nuclear markers AT3G09060 and AT1G09680), molecular dating, diversification, and ancestral range estimation analyses were carried out. Our results demonstrate that both Hyssopus and Lallemantia are embedded within Dracocephalum and nine well-supported clades can be recognized within Dracocephalum s.l. Analyses of divergence times suggest that the genus experienced an early rapid radiation during the middle to late Miocene with major lineages diversifying within a relatively narrow timescale. Ancestral area reconstruction analyses indicate that Dracocephalum s.l. originated in Central and West Asia and southern Siberia, and dispersed from Central and West Asia into the QTP and adjacent areas twice independently during the Pliocene. The aridification of the Asian interior possibly promoted the rapid radiation of Dracocephalum within this region, and the uplift of the QTP appears to have triggered the dispersal and recent rapid diversification of the genus in the QTP and adjacent regions. Combining molecular phylogenetic and morphological evidence, a revised infrageneric classification of Dracocephalum s.l. is proposed, which recognizes nine sections within the genus.


Assuntos
Lamiaceae , Teorema de Bayes , Ecossistema , Lamiaceae/genética , Filogenia , Plastídeos
4.
BMC Biol ; 19(1): 2, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33419433

RESUMO

BACKGROUND: A robust molecular phylogeny is fundamental for developing a stable classification and providing a solid framework to understand patterns of diversification, historical biogeography, and character evolution. As the sixth largest angiosperm family, Lamiaceae, or the mint family, consitutes a major source of aromatic oil, wood, ornamentals, and culinary and medicinal herbs, making it an exceptionally important group ecologically, ethnobotanically, and floristically. The lack of a reliable phylogenetic framework for this family has thus far hindered broad-scale biogeographic studies and our comprehension of diversification. Although significant progress has been made towards clarifying Lamiaceae relationships during the past three decades, the resolution of a phylogenetic backbone at the tribal level has remained one of the greatest challenges due to limited availability of genetic data. RESULTS: We performed phylogenetic analyses of Lamiaceae to infer relationships at the tribal level using 79 protein-coding plastid genes from 175 accessions representing 170 taxa, 79 genera, and all 12 subfamilies. Both maximum likelihood and Bayesian analyses yielded a more robust phylogenetic hypothesis relative to previous studies and supported the monophyly of all 12 subfamilies, and a classification for 22 tribes, three of which are newly recognized in this study. As a consequence, we propose an updated phylogenetically informed tribal classification for Lamiaceae that is supplemented with a detailed summary of taxonomic history, generic and species diversity, morphology, synapomorphies, and distribution for each subfamily and tribe. CONCLUSIONS: Increased taxon sampling conjoined with phylogenetic analyses based on plastome sequences has provided robust support at both deep and shallow nodes and offers new insights into the phylogenetic relationships among tribes and subfamilies of Lamiaceae. This robust phylogenetic backbone of Lamiaceae will serve as a framework for future studies on mint classification, biogeography, character evolution, and diversification.


Assuntos
Evolução Molecular , Genes de Plantas , Lamiaceae/classificação , Filogenia , Plastídeos/genética , Lamiaceae/genética
5.
Syst Biol ; 68(3): 460-481, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30365031

RESUMO

Phylogenies recurrently demonstrate that oceanic island systems have been home to rapid clade diversification and adaptive radiations. The existence of adaptive radiations posits a central role of natural selection causing ecological divergence and speciation, and some plant radiations have been highlighted as paradigmatic examples of such radiations. However, neutral processes may also drive speciation during clade radiations, with ecological divergence occurring following speciation. Here, we document an exceptionally rapid and unique radiation of Lamiaceae within the New Caledonian biodiversity hotspot. Specifically, we investigated various biological, ecological, and geographical drivers of species diversification within the genus Oxera. We found that Oxera underwent an initial process of rapid cladogenesis likely triggered by a dramatic period of aridity during the early Pliocene. This early diversification of Oxera was associated with an important phase of ecological diversification triggered by significant shifts of pollination syndromes, dispersal modes, and life forms. Finally, recent diversification of Oxera appears to have been further driven by the interplay of allopatry and habitat shifts likely related to climatic oscillations. This suggests that Oxera could be regarded as an adaptive radiation at an early evolutionary stage that has been obscured by more recent joint habitat diversification and neutral geographical processes. Diversification within Oxera has perhaps been triggered by varied ecological and biological drivers acting in a leapfrog pattern, but geographic processes may have been an equally important driver. We suspect that strictly adaptive radiations may be rare in plants and that most events of rapid clade diversification may have involved a mixture of geographical and ecological divergence.


Assuntos
Ecossistema , Especiação Genética , Lamiaceae/classificação , Lamiaceae/fisiologia , Adaptação Fisiológica , Biodiversidade , Filogenia
6.
Am J Bot ; 106(4): 573-597, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30986330

RESUMO

PREMISE OF THE STUDY: A key question in evolutionary biology is why some clades are more successful by being widespread geographically, biome diverse, or species-rich. To extend understanding of how shifts in area, biomes, and pollinators impact diversification in plants, we examined the relationships of these shifts to diversification across the mega-genus Salvia. METHODS: A chronogram was developed from a supermatrix of anchored hybrid enrichment genomic data and targeted sequence data for over 500 of the nearly 1000 Salvia species. Ancestral areas and biomes were reconstructed using BioGeoBEARS. Pollinator guilds were scored, ancestral pollinators determined, shifts in pollinator guilds identified, and rates of pollinator switches compared. KEY RESULTS: A well-resolved phylogenetic backbone of Salvia and updated subgeneric designations are presented. Salvia originated in Southwest Asia in the Oligocene and subsequently dispersed worldwide. Biome shifts are frequent from a likely ancestral lineage utilizing broadleaf and/or coniferous forests and/or arid shrublands. None of the four species diversification shifts are correlated to shifts in biomes. Shifts in pollination system are not correlated to species diversification shifts, except for one hummingbird shift that precedes a major shift in diversification near the crown of New World subgen. Calosphace. Multiple reversals back to bee pollination occurred within this hummingbird clade. CONCLUSIONS: Salvia diversified extensively in different continents, biomes, and with both bee and bird pollinators. The lack of tight correlation of area, biome, and most pollinator shifts to the four documented species diversification shifts points to other important drivers of speciation in Salvia.


Assuntos
Ecossistema , Especiação Genética , Filogenia , Polinização , Salvia , Animais , Abelhas , Aves , Filogeografia
7.
Bioessays ; 39(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28980328

RESUMO

Phylogenetic trees are a crucial backbone for a wide breadth of biological research spanning systematics, organismal biology, ecology, and medicine. In 2015, the Open Tree of Life project published a first draft of a comprehensive tree of life, summarizing digitally available taxonomic and phylogenetic knowledge. This paper reviews, investigates, and addresses the following questions as a follow-up to that paper, from the perspective of researchers involved in building this summary of the tree of life: Is there a tree of life and should we reconstruct it? Is available data sufficient to reconstruct the tree of life? Do we have access to phylogenetic inferences in usable form? Can we combine different phylogenetic estimates across the tree of life? And finally, what is the future of understanding the tree of life?


Assuntos
Evolução Biológica , Genômica/métodos , Filogenia , Archaea/genética , Bactérias/genética , Eucariotos/genética , Transferência Genética Horizontal
8.
Mol Phylogenet Evol ; 122: 59-79, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29410353

RESUMO

Inferring interfamilial relationships within the eudicot order Ericales has remained one of the more recalcitrant problems in angiosperm phylogenetics, likely due to a rapid, ancient radiation. As a result, no comprehensive time-calibrated tree or biogeographical analysis of the order has been published. Here, we elucidate phylogenetic relationships within the order and then conduct time-dependent biogeographical and diversification analyses by using a taxon and locus-rich supermatrix approach on one-third of the extant species diversity calibrated with 23 macrofossils and two secondary calibration points. Our results corroborate previous studies and also suggest several new but poorly supported relationships. Newly suggested relationships are: (1) holoparasitic Mitrastemonaceae is sister to Lecythidaceae, (2) the clade formed by Mitrastemonaceae + Lecythidaceae is sister to Ericales excluding balsaminoids, (3) Theaceae is sister to the styracoids + sarracenioids + ericoids, and (4) subfamilial relationships with Ericaceae suggest that Arbutoideae is sister to Monotropoideae and Pyroloideae is sister to all subfamilies excluding Arbutoideae, Enkianthoideae, and Monotropoideae. Our results indicate Ericales began to diversify 110 Mya, within Indo-Malaysia and the Neotropics, with exchange between the two areas and expansion out of Indo-Malaysia becoming an important area in shaping the extant diversity of many families. Rapid cladogenesis occurred along the backbone of the order between 104 and 106 Mya. Jump dispersal is important within the order in the last 30 My, but vicariance is the most important cladogenetic driver of disjunctions at deeper levels of the phylogeny. We detect between 69 and 81 shifts in speciation rate throughout the order, the vast majority of which occurred within the last 30 My. We propose that range shifting may be responsible for older shifts in speciation rate, but more recent shifts may be better explained by morphological innovation.


Assuntos
Biodiversidade , Magnoliopsida/classificação , Filogenia , Animais , Cloroplastos/genética , Ásia Oriental , Fósseis/história , Especiação Genética , História Antiga , Magnoliopsida/genética , Mitocôndrias/genética , Filogeografia/história , Ribossomos/genética
9.
Ann Bot ; 122(4): 649-668, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-29945172

RESUMO

Background and Aims: Salvia is the largest genus within Lamiaceae, with about 980 species currently recognized. East Asia, with approx. 100 species, is one of the three major biodiversity centres of Salvia. However, relationships within this lineage remain unclear, and the staminal lever mechanism, which may represent a key innovation within the genus, has been understudied. By using six genetic markers and nearly comprehensive taxon sampling, this study attempts to elucidate relationships and examine evolutionary trends of staminal development within the East Asia (EA) Salvia clade. Methods: Ninety-one taxa of EA Salvia were sampled and 34 taxa representing all other major lineages of Salvia were included for analysis. Two nuclear [internal transcribed spacer (ITS) and external transcribed spacer (ETS)] and four chloroplast (psbA-trnH, ycf1-rps15, trnL-trnF and rbcL) DNA markers were used for phylogenetic analysis employing maximum parsimony (MP), maximum likelihood (ML) and BEAST, with the latter also used to estimate divergence times. Key Results: All Salvia species native to East Asia form a clade, and eight major subclades (A-G) were recognized. Subclade A, comprising two limestone endemics (S. sonchifolia and S. petrophila), is sister to the remainder of EA Salvia. Six distinct stamen types were observed within the EA clade. Stamen type A, with two fully fertile posterior thecae, only occurs in S. sonchifolia and may represent the ancestral stamen type within EA Salvia. Divergence time estimates showed that the crown of EA Salvia began to diversify approx. 17.4 million years ago. Conclusions: This study supports the adoption of a broadly defined Salvia and treats EA Salvia as a subgenus, Glutinaria, recognizing eight sections within this subgenus. Stamen type A is ostensibly plesiomorphic within EA Salvia, and the other five types may have been derived from it. Staminal morphology has evolved in parallel within the EA Salvia, and staminal structure alone is inadequate to delimit infrageneric categories.


Assuntos
Biodiversidade , Evolução Biológica , Salvia/genética , Ásia Oriental , Flores/anatomia & histologia , Flores/genética , Filogenia , Salvia/anatomia & histologia
10.
Am J Bot ; 105(11): 1938-1950, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30408151

RESUMO

PREMISE OF THE STUDY: We used spatial phylogenetics to analyze the assembly of the Wisconsin flora, linking processes of dispersal and niche evolution to spatial patterns of floristic and phylogenetic diversity and testing whether phylogenetic niche conservatism can account for these patterns. METHODS: We used digitized records and a new molecular phylogeny for 93% of vascular plants in Wisconsin to estimate spatial variation in species richness and phylogenetic α and ß diversity in a native flora shaped mainly by postglacial dispersal and response to environmental gradients. We developed distribution models for all species and used these to infer fine-scale variation in potential diversity, phylogenetic distance, and interspecific range overlaps. We identified 11 bioregions based on floristic composition, mapped areas of neo- and paleo-endemism to establish new conservation priorities and predict how community-assembly patterns should shift with climatic change. KEY RESULTS: Spatial phylogenetic turnover most strongly reflects differences in temperature and spatial distance. For all vascular plants, assemblages shift from phylogenetically clustered to overdispersed northward, contrary to most other studies. This pattern is lost for angiosperms alone, illustrating the importance of phylogenetic scale. CONCLUSIONS: Species ranges and assemblage composition appear driven primarily by phylogenetic niche conservatism. Closely related species are ecologically similar and occupy similar territories. The average level and geographic structure of plant phylogenetic diversity within Wisconsin are expected to greatly decline over the next half century, while potential species richness will increase throughout the state. Our methods can be applied to allochthonous communities throughout the world.


Assuntos
Evolução Biológica , Ecossistema , Traqueófitas/genética , Mudança Climática , Previsões , Filogeografia , Wisconsin
11.
Proc Natl Acad Sci U S A ; 112(41): 12764-9, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26385966

RESUMO

Reconstructing the phylogenetic relationships that unite all lineages (the tree of life) is a grand challenge. The paucity of homologous character data across disparately related lineages currently renders direct phylogenetic inference untenable. To reconstruct a comprehensive tree of life, we therefore synthesized published phylogenies, together with taxonomic classifications for taxa never incorporated into a phylogeny. We present a draft tree containing 2.3 million tips-the Open Tree of Life. Realization of this tree required the assembly of two additional community resources: (i) a comprehensive global reference taxonomy and (ii) a database of published phylogenetic trees mapped to this taxonomy. Our open source framework facilitates community comment and contribution, enabling the tree to be continuously updated when new phylogenetic and taxonomic data become digitally available. Although data coverage and phylogenetic conflict across the Open Tree of Life illuminate gaps in both the underlying data available for phylogenetic reconstruction and the publication of trees as digital objects, the tree provides a compelling starting point for community contribution. This comprehensive tree will fuel fundamental research on the nature of biological diversity, ultimately providing up-to-date phylogenies for downstream applications in comparative biology, ecology, conservation biology, climate change, agriculture, and genomics.


Assuntos
Classificação/métodos , Filogenia , Animais , Humanos
12.
Am J Bot ; 104(11): 1695-1707, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29158343

RESUMO

PREMISE OF THE STUDY: The subtribe Menthinae (Lamiaceae), with 35 genera and 750 species, is among the largest and most economically important subtribes within the mint family. Most genera of Menthinae are found exclusively in the New World, where the group has a virtually continuous distribution ranging from temperate North America to southern South America. In this study, we explored the presence, timing, and origin of amphitropical disjuncts within Menthinae. METHODS: Our analyses were based on a data set consisting of 89 taxa and the nuclear ribosomal DNA markers ITS and ETS. Phylogenetic relationships were determined under maximum likelihood and Bayesian criteria, divergence times were estimated with the program BEAST, and ancestral range estimated with BioGeoBEARS. KEY RESULTS: A North Atlantic Land Bridge migration event at about 10.6 Ma is inferred from western Eurasia to North America. New World Menthinae spread rapidly across North America, and then into Central and South America. Several of the large speciose genera are not monophyletic with nuclear rDNA, a finding mirrored with previous chloroplast DNA results. Three amphitropical disjunctions involving North and southern South America clades, one including a southeastern South American clade with several genera, were inferred to have occurred within the past 5 Myr. CONCLUSIONS: Although three New World Menthinae genera occur in both North and South America, none exhibit an amphitropical disjunction. However, three clades exhibit amphitropical disjunctions, all dating to the early Pliocene, and all involve jump dispersals to either southeastern or southwestern South America from southeastern North America.


Assuntos
Lamiaceae/fisiologia , Dispersão Vegetal , Teorema de Bayes , DNA de Plantas/química , DNA de Plantas/genética , Lamiaceae/genética , América do Norte , Filogeografia , Análise de Sequência de DNA , América do Sul
13.
Mol Phylogenet Evol ; 98: 184-200, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26923493

RESUMO

Pogostemon (Lamiaceae; Lamioideae) sensu lato is a large genus consisting of about 80 species with a disjunct African/Asian distribution. The infrageneric taxonomy of the genus has historically been troublesome due to morphological variability and putative convergent evolution within the genus. Notably, some species of Pogostemon are obligately aquatic, perhaps the only Lamiaceae taxa which exhibit this trait. Phylogenetic analyses using the nuclear ribosomal internal transcribed spacer (ITS) and five plastid regions (matK, rbcL, rps16, trnH-psbA, trnL-F), confirmed the monophyly of Pogostemon and its sister relationship with the genus Anisomeles. Pogostemon was resolved into two major clades, and none of the three morphologically defined subgenera of Pogostemon were supported as monophyletic. Inflorescence type (spikes with more than two lateral branches vs. a single terminal spike, or rarely with two lateral branches) is phylogenetically informative and consistent with the two main clades we recovered. Accordingly, a new infrageneric classification of Pogostemon consisting of two subgenera is proposed. Molecular dating and biogeographic diversification analyses suggest that Pogostemon split from its sister genus in southern and southeast Asia in the early Miocene. The early strengthening of the Asia monsoon system that was triggered by the uplifting of the Qinghai-Tibetan Plateau may have played an important role in the subsequent diversification of the genus. In addition, our results suggest that transoceanic long-distance dispersal of Pogostemon from Asia to Africa occurred at least twice, once in the late Miocene and again during the late-Miocene/early-Pliocene.


Assuntos
Evolução Molecular , Filogenia , Pogostemon/classificação , Pogostemon/genética , África , Ásia , Fenótipo , Plastídeos/genética
14.
Mol Phylogenet Evol ; 95: 183-95, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26702956

RESUMO

The role of geography and ecology in speciation are often discussed in the context of phylogenetic niche conservatism (PNC), the propensity of lineages to retain ancestral niche related traits. However, a recent paradigm shift focuses instead on measuring divergence of these traits in conjunction with patterns of speciation. Under this framework, we analyzed the diversification of North America's third most diverse family, Cyperaceae ("sedges"), using a modified Parsimony Analysis of Endemicity approach to identify floristic regions and ordination statistics to quantify species distribution in a continuous manner. Utilizing over 200,000 georeferenced specimens, we characterized the geographical distribution and climatic and edaphic niche space occupied by each species. We constructed a supermatrix phylogeny of the North American sedge flora, aided in part by the sequencing of all sedges of Wisconsin, and employed a multifaceted approach to assess the role of geographical and ecological divergence on lineage diversification. In addition to measuring phylogenetic signal for these traits, we also measured pairwise phylogenetic distance of species within floristic regions, calculated rates of speciation, and tested for correlations of speciation rate to tempo of geographical and ecological evolution. Our analyses consistently show that evolutionarily related species tend to be geographically unrelated. Rates of geographical and ecological diversification are closely linked to tempo of speciation, and exploration of geographical place coincides with divergence in ecological niche space. We highlight the benefits of treating geography in a continuous manner, and stress the importance of employing a diverse suite of analytical approaches in testing hypotheses regarding the evolution of range and niche.


Assuntos
Carex (Planta)/classificação , Carex (Planta)/genética , Evolução Molecular , Especiação Genética , Cyperaceae/classificação , Cyperaceae/genética , Ecossistema , Geografia , América do Norte , Fenótipo , Filogenia , Filogeografia , Estados Unidos
15.
Mol Phylogenet Evol ; 83: 86-98, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25479063

RESUMO

Saxifragaceae (Saxifragales) contain approximately 640 species and 33 genera, about half of which are monotypic. Due to factors such as morphological stasis, convergent morphological evolution, and disjunct distributions, relationships within Saxifragaceae have historically been troublesome. The family occurs primarily in mountainous regions of the Northern Hemisphere, with the highest generic and species diversity in western North America, but disjunct taxa are known from southern South America. Here, we integrate broad gene (56 loci) and taxon (223 species) sampling strategies, both the most comprehensive to date within Saxifragaceae, with fossil calibrations and geographical distribution data to address relationships, divergence times, and historical biogeography among major lineages of Saxifragaceae. Two previously recognized main clades, the heucheroids (eight groups+Saniculiphyllum) and saxifragoids (Saxifraga s.s.), were re-affirmed by our phylogenetic analyses. Relationships among the eight heucheroid groups, as well as the phylogenetic position of Saniculiphyllum within the heucheroids, were resolved with mostly high support. Divergence time estimates indicate that Saxifragaceae began to diversify ca. 38.37 million years ago (Mya; 95% HPD=30.99-46.11Mya) in the Mid-Late Eocene, and that the two major lineages, the heucheroids and saxifragoids, began to diversify approximately 30.04Mya (95% HPD=23.87-37.15Mya) and 30.85 Mya (95% HPD=23.47-39.33Mya), respectively. We reconstructed ancestral geographic areas using statistical dispersal-vicariance (S-DIVA). These analyses indicate several radiations within Saxifragaceae: one in eastern Asia and multiple radiations in western North America. Our results also demonstrate that large amounts of sequence data coupled with broad taxon sampling can help resolve clade relationships that have thus far seemed intractable.


Assuntos
Evolução Biológica , Filogenia , Saxifragaceae/classificação , Teorema de Bayes , DNA de Cloroplastos/genética , DNA de Plantas/genética , DNA Ribossômico/genética , Ásia Oriental , Fósseis , Geografia , Funções Verossimilhança , Modelos Genéticos , América do Norte , Alinhamento de Sequência , Análise de Sequência de DNA
16.
Syst Biol ; 63(3): 368-82, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24391149

RESUMO

Since the advent of molecular phylogenetics more than 25 years ago, a major goal of plant systematists has been to discern the root of the angiosperms. Although most studies indicate that Amborella trichopoda is sister to all remaining extant flowering plants, support for this position has varied with respect to both the sequence data sets and analyses employed. Recently, Goremykin et al. (2013) questioned the "Amborella-sister hypothesis" using a "noise-reduction" approach and reported a topology with Amborella + Nymphaeales (water lilies) sister to all remaining angiosperms. Through a series of analyses of both plastid genomes and mitochondrial genes, we continue to find mostly strong support for the Amborella-sister hypothesis and offer a rebuttal of Goremykin et al. (2013). The major tenet of Goremykin et al. is that the Amborella-sister position is determined by noisy data--that is, characters with high rates of change and lacking true phylogenetic signal. To investigate the signal in these noisy data further, we analyzed the discarded characters from their noise-reduced alignments. We recovered a tree identical to that of the currently accepted angiosperm framework, including the position of Amborella as sister to all other angiosperms, as well as all other major clades. Thus, the signal in the "noisy" data is consistent with that of our complete data sets--arguing against the use of their noise-reduction approach. We also determined that one of the alignments presented by Goremykin et al. yields results at odds with their central claim--their data set actually supports Amborella as sister to all other angiosperms, as do larger plastid data sets we present here that possess more complete taxon sampling both within the monocots and for angiosperms in general. Previous unpartitioned, multilocus analyses of mitochondrial DNA (mtDNA) data have provided the strongest support for Amborella + Nymphaeales as sister to other angiosperms. However, our analysis of third codon positions from mtDNA sequence data also supports the Amborella-sister hypothesis. Finally, we challenge the conclusion of Goremykin et al. that the first flowering plants were aquatic and herbaceous, reasserting that even if Amborella + water lilies, or water lilies alone, are sister to the rest of the angiosperms, the earliest angiosperms were not necessarily aquatic and/or herbaceous.


Assuntos
Magnoliopsida/classificação , Magnoliopsida/genética , Filogenia
17.
Mol Phylogenet Evol ; 77: 183-94, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24792085

RESUMO

Rapid organismal radiations occurring on the Qinghai-Tibetan Plateau (QTP) and the mechanisms underlying Asia-Africa intercontinental disjunctions have both attracted much attention from evolutionary biologists. Here we use the genus Isodon (Lamiaceae), a primarily East Asian lineage with disjunct species in central and southern Africa, as a case study to shed light upon these processes. The molecular phylogeny and biogeographic history of Isodon were reconstructed using sequences of three plastid markers, the nuclear ribosomal internal transcribed spacer (nrITS), and a low-copy nuclear gene (LEAFY intron II). The evolution of chromosome numbers in this genus was also investigated using probabilistic models. Our results support a monophyletic Isodon that includes the two disjunct African species, both of which likely formed through allopolyploidy. An overland migration from Asia to Africa through Arabia during the early Miocene is proposed as the most likely explanation for the present disjunct distribution of Isodon. The opening of the Red Sea in the middle Miocene may appear to have had a major role in disrupting floristic exchange between Asia and Africa. In addition, a rapid radiation of Isodon was suggested to occur in the late Miocene. It corresponds with one of the major uplifts of the QTP and subsequent aridification events. Our results support the hypothesis that geological and climatic events play important roles in driving biological diversification of organisms distributed in the QTP area.


Assuntos
Isodon/genética , Filogenia , África , China , Cromossomos de Plantas , Isodon/classificação , Filogeografia , Análise de Sequência de DNA
19.
Am J Bot ; 100(10): 2023-39, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24091784

RESUMO

PREMISE OF THE STUDY: Sparganium (Typhaceae) is a genus of aquatic monocots containing ±14 species, with flowers aggregated in unisexual, spherical heads, and habit ranging from floating to emergent. Sparganium presents an opportunity to investigate diversification, character evolution, and biogeographical relationships in a widespread temperate genus of aquatic monocots. We present a fossil-calibrated, molecular phylogeny of Sparganium based on analysis of two chloroplast and two nuclear markers. Within this framework, we examine character evolution in both habit and stigma number and infer the ancestral area and biogeographic history of the genus. • METHODS: Sequence data from two cpDNA and two nDNA markers were analyzed using maximum parsimony, maximum likelihood, and Bayesian inference. We used the program BEAST to simultaneously estimate phylogeny and divergence times, S-DIVA and Lagrange for biogeographical reconstruction, and BayesTraits to examine locule number and habit evolution. • KEY RESULTS: Two major clades were recovered with strong support: one composed of S. erectum and S. eurycarpum; and the other containing all remaining Sparganium. We realigned the subgenera to conform to these clades. Divergence time analysis suggests a Miocene crown origin but Pliocene diversification. Importantly, the floating-leaved habit has arisen multiple times in the genus, from emergent ancestors-contrary to past hypotheses. • CONCLUSIONS: Cooling trends during the Tertiary are correlated with the isolation of temperate Eurasian and North American taxa. Vicariance, long-distance dispersal, and habitat specialization are proposed as mechanisms for Sparganium diversification.


Assuntos
Organismos Aquáticos/classificação , Biodiversidade , Evolução Biológica , Filogenia , Filogeografia , Typhaceae/classificação , Organismos Aquáticos/fisiologia , Núcleo Celular/genética , DNA de Cloroplastos/genética , Flores/fisiologia , Funções Verossimilhança , Reprodução , Análise de Sequência de DNA , Fatores de Tempo , Typhaceae/fisiologia
20.
Evolution ; 77(2): 646-653, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36626811

RESUMO

We have previously suggested that a shift from bee to hummingbird pollination, in concert with floral architecture modifications, occurred at the crown of Salvia subgenus Calosphace in North America ca. 20 mya (Kriebel et al. 2020 and references therein). Sazatornil et al. (2022), using a hidden states model, challenged these assertions, arguing that bees were the ancestral pollinator of subg. Calosphace and claiming that hummingbirds could not have been the ancestral pollinator of subg. Calosphace because hummingbirds were not contemporaneous with crown subg. Calosphace in North America. Here, using a variety of models, we demonstrate that most analyses support hummingbirds as ancestral pollinators of subg. Calosphace and show that Sazatornil et al. (2022) erroneously concluded that hummingbirds were absent from North America ca. 20 mya. We contend that "biological realism" - based on timing and placement of hummingbirds in Mexico ca. 20 mya and the correlative evolution of hummingbird associated floral traits - must be considered when comparing models based on fit and complexity, including hidden states models.


Assuntos
Flores , Salvia , Animais , Abelhas , Flores/fisiologia , Polinização/fisiologia , América do Norte , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA