RESUMO
In this paper, we present a chip-based C-band ODNP platform centered around an NMR-on-a-chip transceiver and a printed microwave (MW) Alderman-Grant (AG) coil with a broadband tunable frequency range of 528MHz. The printable ODNP probe is optimized for a high input-power-to-magnetic-field conversion-efficiency, achieving a measured ODNP enhancement factor of -151 at microwave power levels of 33.3dBm corresponding to 2.1W. NMR measurements with and without microwave irradiation verify the functionality and the state-of-the-art performance of the proposed ODNP platform. The wide tuning range of the system allows for indirect measurements of the EPR signal of the DNP agent by sweeping the microwave excitation frequency and recording the resulting NMR signal. This feature can, e.g., be used to detect line broadening of the DNP agent. Moreover, we demonstrate experimentally that the wide tuning range of the new ODNP platform can be used to perform multi-tone microwave excitation for further signal enhancement: Using a 10mM TEMPOL solution, we improved the enhancement by a factor of two.
RESUMO
In this article, we present a portable NMR relaxometry system optimized for the point-of-care analysis of body liquids such as blood. The presented system is centered on an NMR-on-a-chip transceiver ASIC, a reference frequency generator with arbitrary phase control, and a custom-designed miniaturized NMR magnet with a field strength of 0.29 T and a total weight of 330 g. The NMR-ASIC co-integrates a low-IF receiver, a power amplifier, and a PLL-based frequency synthesizer on a total chip area of 1100 × 900 µm 2. The arbitrary reference frequency generator enables the use of conventional CPMG and inversion sequences, as well as modified water-suppression sequences. Moreover, it is used to implement an automatic frequency lock to correct temperature-induced magnetic field drifts. Proof-of-concept measurements on NMR phantoms and human blood samples show an excellent concentration sensitivity of v[Formula: see text] = 2.2 mM/[Formula: see text]. This very good performance renders the presented system an ideal candidate for the future NMR-based point-of-care detection of biomarkers such as the blood glucose concentration.
Assuntos
Imageamento por Ressonância Magnética , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Amplificadores EletrônicosRESUMO
In this paper, we present a custom-designed nuclear magnetic resonance (NMR) platform based on a broadband complementary metal-oxide-semiconductor (CMOS) NMR-on-a-chip transceiver and a synchronous reference signal generator, which features arbitrary phase control of the excitation pulse in combination with phase-coherent detection at a non-zero intermediate frequency (IF). Moreover, the presented direct digital synthesis (DDS)-based frequency generator enables a digital temperature compensation scheme similar to classical field locking without the need for additional hardware. NMR spectroscopy and relaxometry measurements verify the functionality of the proposed frequency reference and temperature compensation scheme as well as the overall state-of-the-art performance of the presented system.
RESUMO
In this paper, we review the latest developments in miniaturization of NMR systems with an emphasis on low-field NMR. We briefly cover the topics of magnet and coil miniaturization, elaborating on the advantages and disadvantages of miniaturized coils for different applications. The main part of the article is dedicated to progress in NMR electronics. Here, we touch upon software-defined radios as an emerging gadget for NMR before we provide a detailed discussion of NMR-on-a-chip transceivers as the ultimate solution in terms of miniaturization of NMR electronics. In addition to discussing the miniaturization capabilities of the NMR-on-a-chip approach, we also investigate the potential use of NMR-on-a-chip devices for an improved NMR system performance. Here, we also discuss the possibility of combining the NMR-on-a-chip approach with EPR-on-a-chip spectrometers to form compact DNP-on-a-chip systems that can provide a significant sensitivity boost, especially for low-field NMR systems.