Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(7): e202315371, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38014650

RESUMO

The high-entropy approach is applied to monoclinic Prussian White (PW) Na-ion cathodes to address the issue of unfavorable multilevel phase transitions upon electrochemical cycling, leading to poor stability and capacity decay. A series of Mn-based samples with up to six metal species sharing the N-coordinated positions was synthesized. The material of composition Na1.65 Mn0.4 Fe0.12 Ni0.12 Cu0.12 Co0.12 Cd0.12 [Fe(CN)6 ]0.92 □0.08 ⋅ 1.09H2 O was found to exhibit superior cyclability over medium/low-entropy and conventional single-metal PWs. We also report, to our knowledge for the first time, that a high-symmetry crystal structure may be advantageous for high-entropy PWs during battery operation. Computational comparisons of the formation enthalpy demonstrate that the compositionally less complex materials are prone to phase transitions, which negatively affect cycling performance. Based on data from complementary characterization techniques, an intrinsic mechanism for the stability improvement of the disordered PW structure upon Na+ insertion/extraction is proposed, namely the dual effect of suppression of phase transitions and mitigation of gas evolution.

2.
ACS Nano ; 18(35): 24441-24457, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39172962

RESUMO

The synergistic engineering of chemical complexity and crystal structures has been applied to Prussian blue analogue (PBA) cathodes in this work. More precisely, the high-entropy concept has been successfully introduced into two structure types of identical composition, namely, cubic and monoclinic. Through the utilization of a variety of complementary characterization techniques, a comprehensive investigation into the electrochemical behavior of the cubic and monoclinic PBAs has been conducted, providing nuanced insights. The implementation of the high-entropy concept exhibits crucial selectivity toward the intrinsic crystal structure. Specifically, while the overall cycling stability of both cathode systems is significantly improved, the synergistic interplay of crystal structure engineering and entropy proves particularly significant. After optimization, the cubic PBA demonstrates structural advantages, showcasing good reversibility, minimal capacity loss, high thermal stability, and unparalleled endurance even under harsh conditions (high specific current and temperature).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA