Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Gastroenterology ; 143(4): 913-6.e7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22728514

RESUMO

Alterations in intestinal microbiota are associated with obesity and insulin resistance. We studied the effects of infusing intestinal microbiota from lean donors to male recipients with metabolic syndrome on the recipients' microbiota composition and glucose metabolism. Subjects were assigned randomly to groups that were given small intestinal infusions of allogenic or autologous microbiota. Six weeks after infusion of microbiota from lean donors, insulin sensitivity of recipients increased (median rate of glucose disappearance changed from 26.2 to 45.3 µmol/kg/min; P < .05) along with levels of butyrate-producing intestinal microbiota. Intestinal microbiota might be developed as therapeutic agents to increase insulin sensitivity in humans; www.trialregister.nl; registered at the Dutch Trial Register (NTR1776).


Assuntos
Glicemia/metabolismo , Fezes/microbiologia , Resistência à Insulina , Intestino Delgado/microbiologia , Síndrome Metabólica/terapia , Metagenoma , Adulto , Alcaligenes faecalis , Bacteroidetes , Índice de Massa Corporal , Clostridium , Escherichia coli , Eubacterium , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Humanos , Masculino , Síndrome Metabólica/sangue , Pessoa de Meia-Idade , Oxalobacter formigenes , Estatísticas não Paramétricas
2.
Sci Rep ; 9(1): 601, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679604

RESUMO

The adequate storage of fecal samples from clinical trials is crucial if analyses are to be performed later and in long-term studies. However, it is unknown whether the composition of the microbiota is preserved during long-term stool storage (>1 year). We therefore evaluated the influence of long-term storage on the microbiota composition of human stool samples collected in RNAlater and stored for approximately five years at -80 °C. We compared storage effects on stool samples from 24 subjects with the effects of technical variation due to different sequencing runs and biological variation (intra- and inter-subject), in another 101 subjects, based on alpha-diversity, beta-diversity and taxonomic composition. We also evaluated the impact of initial alpha-diversity and fecal microbiota composition on beta-diversity instability upon storage. Overall, long-term stool storage at -80 °C had only limited effects on the microbiota composition of human feces. The magnitude of changes in alpha- and beta- diversity and taxonomic composition after long-term storage was similar to inter-sequencing variation and smaller than biological variation (both intra- and inter-subject). The likelihood of fecal samples being affected by long-term storage correlated with the initial relative abundance of some genera and tend to be affected by initial taxonomic richness.


Assuntos
Fezes/microbiologia , Microbiota , Preservação Biológica/métodos , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Humanos , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Manejo de Espécimes , Temperatura
3.
Nat Biotechnol ; 35(11): 1069-1076, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28967887

RESUMO

Technical variation in metagenomic analysis must be minimized to confidently assess the contributions of microbiota to human health. Here we tested 21 representative DNA extraction protocols on the same fecal samples and quantified differences in observed microbial community composition. We compared them with differences due to library preparation and sample storage, which we contrasted with observed biological variation within the same specimen or within an individual over time. We found that DNA extraction had the largest effect on the outcome of metagenomic analysis. To rank DNA extraction protocols, we considered resulting DNA quantity and quality, and we ascertained biases in estimates of community diversity and the ratio between Gram-positive and Gram-negative bacteria. We recommend a standardized DNA extraction method for human fecal samples, for which transferability across labs was established and which was further benchmarked using a mock community of known composition. Its adoption will improve comparability of human gut microbiome studies and facilitate meta-analyses.


Assuntos
Fracionamento Químico/métodos , DNA/química , Fezes/química , Metagenômica , Bactérias/genética , Biologia Computacional , Humanos , Controle de Qualidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA